Consideramos la siguiente simulaciòn:
Creamos las observaciones con un proceso generador dado:
## Warning: package 'tidyverse' was built under R version 4.0.5
## -- Attaching packages --------------------------------------- tidyverse 1.3.1 --
## v ggplot2 3.3.5 v purrr 0.3.4
## v tibble 3.1.4 v dplyr 1.0.7
## v tidyr 1.1.3 v stringr 1.4.0
## v readr 2.0.1 v forcats 0.5.1
## Warning: package 'ggplot2' was built under R version 4.0.5
## Warning: package 'tibble' was built under R version 4.0.5
## Warning: package 'tidyr' was built under R version 4.0.5
## Warning: package 'readr' was built under R version 4.0.5
## Warning: package 'dplyr' was built under R version 4.0.5
## Warning: package 'forcats' was built under R version 4.0.5
## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
Efectuamos la regresiòn lineal:
##
## Call:
## lm(formula = y ~ x, data = .)
##
## Coefficients:
## (Intercept) x
## -0.04991 5.55690
## (Intercept) x
## -0.04990882 5.55690164
Ponemos las estimaciones en un dataframe:
tb <- tb %>%
mutate(
yhat1 = predict(lm(y ~ x, .)),
yhat2 = 0.0732608 + 5.685033*x,
uhat1 = residuals(lm(y ~ x, .)),
uhat2 = y - yhat2
)
summary(tb[-1:-3])
## yhat1 yhat2 uhat1 uhat2
## Min. :-20.45096 Min. :-20.7982 Min. :-51.5275 Min. :-51.5247
## 1st Qu.: -3.79189 1st Qu.: -3.7550 1st Qu.: -8.1520 1st Qu.: -8.2751
## Median : -0.13842 Median : -0.0173 Median : -0.1727 Median : -0.3147
## Mean : -0.08624 Mean : 0.0361 Mean : 0.0000 Mean : -0.1223
## 3rd Qu.: 3.71578 3rd Qu.: 3.9258 3rd Qu.: 7.9778 3rd Qu.: 7.8506
## Max. : 21.12342 Max. : 21.7348 Max. : 44.7176 Max. : 44.4416
Ploteando:
tb %>%
lm(y ~ x, .) %>%
ggplot(aes(x=x, y=y)) +
ggtitle("Minimos cuadrados") +
geom_point(size = 0.05, color = "black", alpha = 0.5) +
geom_smooth(method = lm, color = "black") +
annotate("text", x = -1.5, y = 30, color = "red",
label = paste("Intercept = ", -0.0732608)) +
annotate("text", x = 1.5, y = -30, color = "blue",
label = paste("Slope =", 5.685033))
## `geom_smooth()` using formula 'y ~ x'
Los estimadores que obtenemos resultan similares a los reales del proceso generador de datos que en este caso conocemos.
Una vez que tenemos los estimadores podemos predecir el valor de cualquier y a partir de las x. La MCO es el mejor predictor lineal y minimiza el error de predicción minimizando la distancias verticales de las observaciones a la recta de regresión.
El coeficiente de la x nos permite entender el efecto marginal de unos cambios en esta:
\[\begin{align} \Delta \widehat{y}=\widehat{\beta}_1 \Delta x \end{align}\]
Dependendo de la transformación de nuestras variables tendremos diferentes interpretaciones de los coeficientes estimados:
Una vez estimados \(\beta_0\) y \(\beta_1\) podemos utlizarlos para obtener los valores ajustados de nuestra regresión:
\[\begin{align} \widehat{y_i}=\widehat{\beta}_0+\widehat{\beta}_1x_i \end{align}\]
Y también los relativos residuales:
\[\begin{align} \widehat{u_i}=y_i - \widehat{\beta}_0 - \widehat{\beta}_1 x_i \end{align}\]
La mayoría son distintos de 0.
¿ Que significa cuando un residual es positivo? ¿Y cuando es negativo?
Si ploteamos los residuales obtendremos:
El patron esferico nos sugiere ausencia de correlación entre los residuales y los valores ajustados obtenidos.
Tenemos diferentes medidas de error para evaluar la bondad de ajuste:
$$\[\begin{align} SST & = \sum_{i=1}^n (y_i - \overline{y})^2 \\ SSE & = \sum_{i=1}^n (\widehat{y_i} - \overline{y})^2 \\ SSR & = \sum_{i=1}^n \widehat{u_i}^2 \end{align}\]$$
Si dividimos SST por n-1 obtenemos la varianza muestral de y.
Para poder ocupar la regresión lineal de manera eficaz y así obtener estimadores de los coeficientes poblacionales inssesgado se tienen que cumplir algunos supuestos:
\(y=\beta_0+\beta_1 x_1 + \dots + \beta_k x_k + \epsilon\)
Implica que el valor medio del error condicionado a las explicativas es igual al valor esperado no condicionado y vale cero. Además, la exogeneidad estricta exige que los errores del modelo no estén correlacionados con ninguna observación. \(E(\epsilon_i)=0 \wedge E(\epsilon_i|x_{11}, x_{21} \dots x_{kn})=E(\epsilon_i)\)
En la muestra ninguna de las variables explicativas es constante. No existen relaciones lineales exactas entre variables explicativas. No excluye cierta correlación (no perfecta) entre las variables. Según Gauss y Márkov, cuando un modelo tiene multicolinealidad exacta suele ser por un error del analista.
La varianza del error, y por tanto de Y, es independiente de los valores de las explicativas y, además, la varianza del error constante. Matemáticamente se expresa como:
\(V(\epsilon_i|X)=V(\epsilon_i|x_{11}, x_{21} \dots x_{kn})=V(\epsilon_i)=\sigma^2\)
Los términos de error de dos observaciones diferentes condicionadas a X están incorrelacionados. Si la muestra es aleatoria no existirá autocorrelación.
\(Cov(\epsilon_i, \epsilon_h|X)=0\)
Utilizamos una base ya presente en r:
## Warning: package 'wooldridge' was built under R version 4.0.5
En particular ocuparemos la CPS que es la current population surveys. Analizamos los datos presentes en la base:
## [1] "educ" "south" "nonwhite" "female" "married" "exper"
## [7] "expersq" "union" "lwage" "age" "year" "y85"
## [13] "y85fem" "y85educ" "y85union"
Podemos etiquetar las variables:
## Warning: package 'Hmisc' was built under R version 4.0.5
## Loading required package: lattice
## Loading required package: survival
## Loading required package: Formula
## Warning: package 'Formula' was built under R version 4.0.3
##
## Attaching package: 'Hmisc'
## The following objects are masked from 'package:dplyr':
##
## src, summarize
## The following objects are masked from 'package:base':
##
## format.pval, units
## cps78_85
##
## 15 Variables 1084 Observations
## --------------------------------------------------------------------------------
## educ
## n missing distinct Info Mean Gmd .05 .10
## 1084 0 18 0.927 12.77 2.882 8 10
## .25 .50 .75 .90 .95
## 12 12 14 16 18
##
## lowest : 1 2 3 4 5, highest: 14 15 16 17 18
##
## Value 1 2 3 4 5 6 7 8 9 10 11
## Frequency 1 2 1 3 2 13 13 39 27 50 50
## Proportion 0.001 0.002 0.001 0.003 0.002 0.012 0.012 0.036 0.025 0.046 0.046
##
## Value 12 13 14 15 16 17 18
## Frequency 447 74 98 38 127 39 60
## Proportion 0.412 0.068 0.090 0.035 0.117 0.036 0.055
## --------------------------------------------------------------------------------
## south
## n missing distinct Info Sum Mean Gmd
## 1084 0 2 0.623 319 0.2943 0.4157
##
## --------------------------------------------------------------------------------
## nonwhite
## n missing distinct Info Sum Mean Gmd
## 1084 0 2 0.304 124 0.1144 0.2028
##
## --------------------------------------------------------------------------------
## female
## n missing distinct Info Sum Mean Gmd
## 1084 0 2 0.729 452 0.417 0.4867
##
## --------------------------------------------------------------------------------
## married
## n missing distinct Info Sum Mean Gmd
## 1084 0 2 0.679 709 0.6541 0.4529
##
## --------------------------------------------------------------------------------
## exper
## n missing distinct Info Mean Gmd .05 .10
## 1084 0 54 0.999 18.28 14.49 2 3
## .25 .50 .75 .90 .95
## 8 15 28 38 42
##
## lowest : 0 1 2 3 4, highest: 49 50 51 54 55
## --------------------------------------------------------------------------------
## expersq
## n missing distinct Info Mean Gmd .05 .10
## 1084 0 54 0.999 499.8 605.7 4 9
## .25 .50 .75 .90 .95
## 64 225 784 1444 1764
##
## lowest : 0 1 4 9 16, highest: 2401 2500 2601 2916 3025
## --------------------------------------------------------------------------------
## union
## n missing distinct Info Sum Mean Gmd
## 1084 0 2 0.553 264 0.2435 0.3688
##
## --------------------------------------------------------------------------------
## lwage : Logaritmo del salario por hora
## n missing distinct Info Mean Gmd .05 .10
## 1084 0 441 1 1.867 0.6116 1.065 1.209
## .25 .50 .75 .90 .95
## 1.470 1.833 2.225 2.565 2.772
##
## lowest : -0.4700 -0.0780 0.0000 0.3567 0.4520
## highest: 3.2189 3.2581 3.2692 3.3514 3.7955
## --------------------------------------------------------------------------------
## age
## n missing distinct Info Mean Gmd .05 .10
## 1084 0 47 0.999 36.54 13.85 20 22
## .25 .50 .75 .90 .95
## 27 34 46 56 59
##
## lowest : 18 19 20 21 22, highest: 60 61 62 63 64
## --------------------------------------------------------------------------------
## year
## n missing distinct Info Mean Gmd
## 1084 0 2 0.75 81.45 3.502
##
## Value 78 85
## Frequency 550 534
## Proportion 0.507 0.493
## --------------------------------------------------------------------------------
## y85
## n missing distinct Info Sum Mean Gmd
## 1084 0 2 0.75 534 0.4926 0.5004
##
## --------------------------------------------------------------------------------
## y85fem
## n missing distinct Info Sum Mean Gmd
## 1084 0 2 0.525 245 0.226 0.3502
##
## --------------------------------------------------------------------------------
## y85educ
## n missing distinct Info Mean Gmd .05 .10
## 1084 0 18 0.861 6.413 7.19 0.00 0.00
## .25 .50 .75 .90 .95
## 0.00 0.00 12.00 16.00 16.85
##
## lowest : 0 2 3 4 5, highest: 14 15 16 17 18
##
## Value 0 2 3 4 5 6 7 8 9 10 11
## Frequency 550 1 1 1 1 3 5 15 12 17 27
## Proportion 0.507 0.001 0.001 0.001 0.001 0.003 0.005 0.014 0.011 0.016 0.025
##
## Value 12 13 14 15 16 17 18
## Frequency 219 37 56 13 71 24 31
## Proportion 0.202 0.034 0.052 0.012 0.065 0.022 0.029
## --------------------------------------------------------------------------------
## y85union
## n missing distinct Info Sum Mean Gmd
## 1084 0 2 0.242 96 0.08856 0.1616
##
## --------------------------------------------------------------------------------
Podemos renombrar los datos:
## [1] "educ" "south" "nonwhite" "female" "married" "exper"
## [7] "expersq" "union" "lwage" "age" "year" "y85"
## [13] "y85fem" "y85educ" "y85union"
## educ sur nonwhite female married exper expersq union lwage age año y85
## 1 12 0 0 0 0 8 64 0 1.2150 25 78 0
## 2 12 0 0 1 1 30 900 1 1.6094 47 78 0
## 3 6 0 0 0 1 38 1444 1 2.1401 49 78 0
## 4 12 0 0 0 1 19 361 1 2.0732 36 78 0
## 5 12 0 0 0 1 11 121 0 1.6490 28 78 0
## 6 8 0 0 0 1 43 1849 0 1.7148 56 78 0
## 7 11 0 0 0 0 2 4 0 1.0986 18 78 0
## 8 15 0 0 1 0 9 81 0 1.8326 29 78 0
## 9 16 0 0 1 0 17 289 0 0.3567 38 78 0
## 10 15 0 0 0 1 23 529 1 2.1547 43 78 0
## 11 15 0 0 0 1 39 1521 1 1.9867 59 78 0
## 12 12 0 0 1 1 5 25 1 1.7047 22 78 0
## 13 11 0 0 0 1 27 729 1 2.1102 43 78 0
## 14 12 0 0 0 1 29 841 0 1.8326 46 78 0
## 15 12 0 0 0 0 7 49 0 1.3083 24 78 0
## 16 12 0 0 1 0 42 1764 1 2.2300 59 78 0
## 17 18 0 0 0 1 35 1225 1 2.5257 58 78 0
## 18 18 0 0 1 1 31 961 1 2.3979 54 78 0
## 19 6 0 0 0 1 24 576 0 1.2528 35 78 0
## 20 14 0 1 0 1 14 196 1 2.0794 33 78 0
## 21 12 0 0 1 0 40 1600 1 2.0149 57 78 0
## 22 12 0 0 1 0 10 100 0 1.2040 27 78 0
## 23 13 0 0 1 0 3 9 0 1.3863 21 78 0
## 24 13 0 0 0 0 2 4 0 1.2311 20 78 0
## 25 15 0 0 0 0 7 49 0 1.5041 27 78 0
## 26 16 0 0 0 0 29 841 0 2.5997 50 78 0
## 27 13 0 0 0 1 27 729 1 2.2380 45 78 0
## 28 18 0 0 0 0 8 64 0 2.3539 31 78 0
## 29 10 0 0 0 1 6 36 1 2.5257 21 78 0
## 30 14 0 0 1 0 2 4 0 0.9361 21 78 0
## 31 8 0 0 0 0 36 1296 1 2.0149 49 78 0
## 32 15 0 0 1 1 23 529 1 1.1314 43 78 0
## 33 8 0 0 1 1 48 2304 1 1.6582 61 78 0
## 34 12 0 0 0 0 21 441 1 2.0677 38 78 0
## 35 8 0 0 0 1 11 121 1 2.0820 24 78 0
## 36 12 0 0 1 1 26 676 1 2.1547 43 78 0
## 37 16 0 0 1 1 10 100 0 1.9671 31 78 0
## 38 14 0 0 0 1 37 1369 0 2.7593 56 78 0
## 39 13 0 0 0 1 21 441 0 1.2972 39 78 0
## 40 16 0 0 1 1 21 441 0 1.2528 42 78 0
## 41 13 0 0 0 0 6 36 1 2.3749 24 78 0
## 42 12 0 0 0 1 25 625 1 1.6368 42 78 0
## 43 13 0 0 0 0 5 25 0 1.2321 23 78 0
## 44 11 0 0 0 0 13 169 1 1.7492 29 78 0
## 45 16 0 0 0 0 15 225 0 2.3026 36 78 0
## 46 12 0 0 1 1 8 64 0 1.5581 25 78 0
## 47 10 0 0 0 1 8 64 1 1.6094 23 78 0
## 48 14 0 0 0 1 11 121 0 1.5581 30 78 0
## 49 12 0 1 0 1 34 1156 1 2.0541 51 78 0
## 50 13 0 0 0 0 8 64 0 1.8326 26 78 0
## 51 12 0 0 0 1 36 1296 0 1.9459 53 78 0
## 52 12 0 0 1 1 30 900 0 1.8326 47 78 0
## 53 16 0 0 1 1 5 25 1 1.1856 26 78 0
## 54 11 0 0 1 1 13 169 0 0.9118 29 78 0
## 55 11 0 0 0 0 2 4 1 1.8718 18 78 0
## 56 9 0 0 0 1 12 144 1 1.9459 26 78 0
## 57 18 0 0 0 1 24 576 0 2.1691 47 78 0
## 58 12 0 1 0 1 17 289 1 2.0149 34 78 0
## 59 8 0 0 0 1 50 2500 0 1.6448 63 78 0
## 60 18 0 0 0 1 8 64 0 2.1072 31 78 0
## 61 12 0 0 1 0 11 121 1 1.6292 28 78 0
## 62 12 0 0 0 1 7 49 0 1.0594 24 78 0
## 63 17 0 0 1 1 26 676 1 2.1691 48 78 0
## 64 8 0 0 0 1 19 361 0 1.3218 32 78 0
## 65 12 0 1 1 0 13 169 1 1.8555 30 78 0
## 66 12 0 0 0 1 9 81 1 1.7492 26 78 0
## 67 14 0 0 0 1 38 1444 0 1.9661 57 78 0
## 68 12 0 0 0 0 4 16 0 1.1982 21 78 0
## 69 14 0 0 1 0 11 121 0 1.9279 30 78 0
## 70 10 0 0 0 1 43 1849 0 2.3026 58 78 0
## 71 11 0 1 0 1 15 225 0 1.3863 31 78 0
## 72 12 0 1 0 1 31 961 1 -0.4700 48 78 0
## 73 6 0 1 0 1 44 1936 1 1.3151 55 78 0
## 74 16 0 0 0 1 16 256 0 2.8994 37 78 0
## 75 12 0 0 0 1 25 625 1 1.9981 42 78 0
## 76 14 0 0 0 1 19 361 1 1.7047 38 78 0
## 77 12 0 0 1 0 3 9 0 1.1787 20 78 0
## 78 13 0 0 1 0 14 196 0 1.6094 32 78 0
## 79 12 0 0 0 1 30 900 0 2.0149 47 78 0
## 80 12 0 0 0 1 32 1024 1 2.4849 49 78 0
## 81 10 0 0 0 1 48 2304 1 2.0794 63 78 0
## 82 12 0 0 0 0 36 1296 1 2.1401 53 78 0
## 83 12 0 0 1 1 7 49 1 1.5828 24 78 0
## 84 12 0 0 0 1 19 361 1 2.3346 36 78 0
## 85 18 0 0 0 0 11 121 0 1.6503 34 78 0
## 86 13 0 0 0 1 32 1024 1 1.5476 50 78 0
## 87 12 0 0 1 1 10 100 0 1.7707 27 78 0
## 88 14 0 0 1 0 3 9 0 1.6094 22 78 0
## 89 16 0 0 1 1 10 100 0 1.2947 31 78 0
## 90 16 0 0 1 1 9 81 0 2.0402 30 78 0
## 91 12 0 0 1 1 13 169 1 1.3218 30 78 0
## 92 12 0 0 0 1 20 400 0 1.8563 37 78 0
## 93 12 0 0 0 1 30 900 1 2.1102 47 78 0
## 94 12 0 0 0 1 10 100 1 2.3632 27 78 0
## 95 18 0 0 1 0 17 289 0 0.6707 40 78 0
## 96 10 0 0 0 1 7 49 1 1.5790 22 78 0
## 97 8 0 0 0 1 32 1024 0 2.1401 45 78 0
## 98 9 0 0 0 1 36 1296 1 1.6630 50 78 0
## 99 14 0 0 0 1 43 1849 0 2.6127 62 78 0
## 100 16 0 0 0 1 9 81 0 2.1691 30 78 0
## 101 8 0 0 0 1 41 1681 1 1.6094 54 78 0
## 102 12 0 0 0 1 21 441 1 2.0794 38 78 0
## 103 14 0 0 0 1 26 676 0 1.5141 45 78 0
## 104 12 0 0 1 1 21 441 0 1.1907 38 78 0
## 105 12 0 0 1 1 42 1764 0 1.7918 59 78 0
## 106 12 0 0 0 1 41 1681 0 2.2300 58 78 0
## 107 13 0 0 1 1 22 484 0 0.9746 40 78 0
## 108 18 0 0 0 1 10 100 0 2.0412 33 78 0
## 109 12 0 0 0 0 3 9 1 1.7918 20 78 0
## 110 14 0 0 0 0 14 196 0 2.1628 33 78 0
## 111 12 0 0 0 1 24 576 1 2.4849 41 78 0
## 112 12 0 0 0 1 13 169 1 1.7918 30 78 0
## 113 12 0 0 1 0 41 1681 1 1.6956 58 78 0
## 114 14 0 0 0 1 16 256 0 2.5257 35 78 0
## 115 12 1 0 0 0 3 9 0 0.9746 20 78 0
## 116 16 1 0 0 1 27 729 0 2.1090 48 78 0
## 117 7 1 0 1 0 31 961 0 1.2947 43 78 0
## 118 11 1 0 1 0 2 4 0 0.9746 18 78 0
## 119 12 1 0 0 1 19 361 0 1.2238 36 78 0
## 120 1 1 0 0 1 47 2209 0 1.2040 53 78 0
## 121 12 1 0 0 0 1 1 0 1.0473 18 78 0
## 122 9 1 0 0 1 5 25 0 1.8216 19 78 0
## 123 12 1 1 1 0 38 1444 1 1.1394 55 78 0
## 124 12 1 0 1 0 2 4 0 0.9163 19 78 0
## 125 12 1 0 0 1 19 361 0 2.2083 36 78 0
## 126 12 1 0 0 1 38 1444 1 2.1691 55 78 0
## 127 12 1 0 0 1 22 484 0 1.7918 39 78 0
## 128 12 1 0 0 1 6 36 0 1.3863 23 78 0
## 129 13 1 0 1 1 15 225 0 1.8718 33 78 0
## 130 12 1 0 0 1 27 729 0 1.2040 44 78 0
## 131 12 1 0 1 0 1 1 0 1.2164 18 78 0
## 132 17 1 0 1 1 12 144 0 1.9095 34 78 0
## 133 16 1 0 0 1 31 961 0 1.7636 52 78 0
## 134 10 1 0 0 1 18 324 0 1.2958 33 78 0
## 135 7 1 1 1 0 33 1089 0 1.3218 45 78 0
## 136 6 1 0 0 0 39 1521 0 1.5669 50 78 0
## 137 16 1 0 0 0 4 16 0 1.6094 25 78 0
## 138 14 1 0 1 0 4 16 0 1.4291 23 78 0
## 139 14 1 0 1 0 2 4 0 1.6582 21 78 0
## 140 17 1 0 0 0 4 16 0 1.9058 26 78 0
## 141 13 1 0 1 0 21 441 1 2.0149 39 78 0
## 142 4 1 0 0 0 13 169 0 0.9555 22 78 0
## 143 17 1 0 0 1 18 324 0 2.6455 40 78 0
## 144 14 1 0 1 0 9 81 0 2.5269 28 78 0
## 145 16 1 0 0 0 8 64 0 1.6094 29 78 0
## 146 10 1 1 0 1 35 1225 0 1.3863 50 78 0
## 147 6 1 0 1 1 17 289 0 1.0647 28 78 0
## 148 13 0 0 0 0 1 1 0 1.5261 19 78 0
## 149 16 0 0 0 1 3 9 1 1.4469 24 78 0
## 150 10 0 0 0 1 41 1681 1 1.8718 56 78 0
## 151 12 0 0 1 1 41 1681 1 3.0564 58 78 0
## 152 18 0 0 0 1 36 1296 0 1.8839 59 78 0
## 153 10 0 1 1 1 16 256 1 1.2528 31 78 0
## 154 12 0 1 1 0 36 1296 1 1.5892 53 78 0
## 155 12 0 1 0 1 39 1521 0 1.8205 56 78 0
## 156 13 0 0 0 1 2 4 0 1.7918 20 78 0
## 157 15 0 0 0 1 8 64 0 1.8137 28 78 0
## 158 12 0 0 0 1 35 1225 0 2.1972 52 78 0
## 159 12 0 0 1 0 12 144 0 1.6607 29 78 0
## 160 12 0 0 1 0 11 121 0 1.6094 28 78 0
## 161 18 0 1 1 0 10 100 0 1.8839 33 78 0
## 162 16 0 1 1 0 3 9 0 1.3218 24 78 0
## 163 10 0 0 0 1 48 2304 1 1.2528 63 78 0
## 164 15 0 0 0 0 20 400 1 2.4950 40 78 0
## 165 6 0 0 0 1 51 2601 1 1.8718 62 78 0
## 166 12 0 0 1 1 12 144 0 1.2238 29 78 0
## 167 10 0 0 0 1 26 676 0 1.7385 41 78 0
## 168 9 0 0 1 1 34 1156 1 2.0794 48 78 0
## 169 13 0 0 1 1 35 1225 0 1.4453 53 78 0
## 170 12 0 0 1 0 12 144 0 1.4469 29 78 0
## 171 11 0 0 0 0 5 25 0 1.2879 21 78 0
## 172 14 0 0 0 0 8 64 0 1.7492 27 78 0
## 173 12 0 0 0 1 29 841 1 2.0477 46 78 0
## 174 7 0 0 0 1 38 1444 1 1.8326 50 78 0
## 175 12 0 0 0 1 33 1089 0 1.3987 50 78 0
## 176 8 0 0 0 1 42 1764 0 1.8326 55 78 0
## 177 16 0 0 0 0 1 1 0 1.9315 22 78 0
## 178 13 0 1 0 0 17 289 1 1.9577 35 78 0
## 179 16 0 0 1 1 5 25 0 1.8326 26 78 0
## 180 12 0 0 1 0 13 169 0 1.2528 30 78 0
## 181 12 0 0 1 1 23 529 0 1.2384 40 78 0
## 182 16 0 0 1 1 12 144 1 0.6131 33 78 0
## 183 12 0 1 0 1 20 400 1 2.0149 37 78 0
## 184 13 0 0 0 1 33 1089 0 2.1691 51 78 0
## 185 9 0 0 0 1 22 484 0 1.4300 36 78 0
## 186 10 0 0 1 0 27 729 1 1.6405 42 78 0
## 187 14 0 0 0 1 9 81 1 1.9279 28 78 0
## 188 16 0 0 0 0 5 25 0 1.9810 26 78 0
## 189 12 0 0 0 1 8 64 0 1.5581 25 78 0
## 190 12 0 0 0 1 32 1024 1 2.1691 49 78 0
## 191 11 0 0 0 1 12 144 1 2.0149 28 78 0
## 192 16 0 0 0 0 2 4 0 1.9772 23 78 0
## 193 12 0 0 0 1 32 1024 1 1.9033 49 78 0
## 194 12 0 0 0 1 32 1024 0 1.8326 49 78 0
## 195 18 0 1 0 1 13 169 1 2.2571 36 78 0
## 196 8 0 0 0 1 34 1156 1 1.8563 47 78 0
## 197 9 0 0 1 0 16 256 0 -0.0780 30 78 0
## 198 16 0 0 0 1 8 64 0 1.6740 29 78 0
## 199 10 0 1 0 0 33 1089 0 1.6094 48 78 0
## 200 12 0 0 0 1 24 576 1 2.0794 41 78 0
## 201 9 0 1 0 1 34 1156 1 1.8326 48 78 0
## 202 18 0 0 0 1 30 900 0 2.9208 53 78 0
## 203 12 0 0 0 0 4 16 1 1.1394 21 78 0
## 204 16 0 1 1 1 5 25 0 1.8326 26 78 0
## 205 12 0 0 1 1 5 25 0 1.5841 22 78 0
## 206 10 0 0 0 1 44 1936 1 2.0820 59 78 0
## 207 11 0 0 0 0 8 64 0 1.7047 24 78 0
## 208 12 0 0 1 1 26 676 0 1.8245 43 78 0
## 209 14 0 0 0 1 37 1369 0 1.9924 56 78 0
## 210 12 0 1 1 0 20 400 0 1.0296 37 78 0
## 211 16 0 1 0 1 16 256 1 2.2558 37 78 0
## 212 12 0 0 0 1 14 196 0 2.3026 31 78 0
## 213 10 0 0 1 0 15 225 1 1.6376 30 78 0
## 214 12 0 0 0 0 3 9 1 1.5841 20 78 0
## 215 16 0 0 0 1 11 121 0 2.1768 32 78 0
## 216 8 0 0 0 1 40 1600 1 1.8326 53 78 0
## 217 12 0 0 1 0 21 441 0 2.4079 38 78 0
## 218 13 0 0 0 1 3 9 0 1.9636 21 78 0
## 219 12 0 0 1 0 17 289 0 1.9741 34 78 0
## 220 12 0 0 0 0 6 36 0 1.4351 23 78 0
## 221 11 1 1 0 1 28 784 1 2.0794 44 78 0
## 222 12 1 0 1 1 6 36 0 1.2040 23 78 0
## 223 14 1 0 1 0 4 16 0 1.2528 23 78 0
## 224 12 1 0 0 1 41 1681 0 2.1691 58 78 0
## 225 12 1 0 0 0 16 256 1 2.0149 33 78 0
## 226 12 1 0 1 1 6 36 0 0.4520 23 78 0
## 227 12 1 0 0 1 39 1521 1 2.0794 56 78 0
## 228 10 1 0 0 1 15 225 0 1.6928 30 78 0
## 229 12 1 0 1 1 18 324 0 1.4325 35 78 0
## 230 15 1 0 0 1 7 49 0 1.4929 27 78 0
## 231 16 1 0 0 1 36 1296 0 1.1394 57 78 0
## 232 14 1 0 1 1 6 36 0 1.7237 25 78 0
## 233 12 1 1 1 0 13 169 0 1.5261 30 78 0
## 234 13 1 0 0 0 2 4 0 1.0986 20 78 0
## 235 5 1 0 0 1 50 2500 0 1.1575 60 78 0
## 236 12 1 0 1 1 21 441 0 1.5581 38 78 0
## 237 12 1 0 0 1 28 784 0 1.2936 45 78 0
## 238 12 1 0 0 1 12 144 1 1.4759 29 78 0
## 239 15 1 1 1 1 29 841 0 1.2809 49 78 0
## 240 12 1 0 0 1 7 49 0 1.3863 24 78 0
## 241 12 1 0 0 1 22 484 0 2.1203 39 78 0
## 242 12 1 1 1 0 11 121 0 1.3481 28 78 0
## 243 12 0 0 1 0 40 1600 0 1.5217 57 78 0
## 244 12 0 0 0 1 31 961 0 1.5315 48 78 0
## 245 12 0 0 1 1 10 100 0 1.4214 27 78 0
## 246 16 0 0 0 1 9 81 0 1.9810 30 78 0
## 247 12 0 1 1 1 10 100 1 1.4469 27 78 0
## 248 15 0 0 0 1 42 1764 0 3.1322 62 78 0
## 249 12 0 0 1 1 45 2025 0 0.8873 62 78 0
## 250 17 0 0 0 1 8 64 1 2.3514 30 78 0
## 251 15 0 0 0 1 32 1024 0 2.1691 52 78 0
## 252 14 0 0 0 0 1 1 0 1.2528 20 78 0
## 253 12 0 0 1 1 17 289 0 1.4271 34 78 0
## 254 14 0 0 0 1 10 100 0 1.7405 29 78 0
## 255 12 0 0 0 1 18 324 1 2.2266 35 78 0
## 256 12 0 0 1 0 10 100 1 0.9676 27 78 0
## 257 12 0 0 0 1 29 841 1 1.8326 46 78 0
## 258 12 0 0 1 0 39 1521 0 1.6094 56 78 0
## 259 12 0 0 1 1 31 961 0 1.1787 48 78 0
## 260 10 0 0 0 1 18 324 1 2.2513 33 78 0
## 261 12 0 1 1 1 14 196 1 2.0149 31 78 0
## 262 12 0 0 1 1 8 64 0 1.0116 25 78 0
## 263 12 1 0 0 0 9 81 0 1.6094 26 78 0
## 264 16 1 0 1 0 3 9 0 1.0296 24 78 0
## 265 9 1 1 1 1 24 576 0 0.9746 38 78 0
## 266 7 1 0 1 1 21 441 0 0.8109 33 78 0
## 267 12 1 0 0 1 15 225 0 1.2879 32 78 0
## 268 18 1 0 0 0 2 4 0 1.8005 25 78 0
## 269 16 1 1 1 0 12 144 0 1.0986 33 78 0
## 270 12 1 1 1 1 7 49 0 1.1939 24 78 0
## 271 9 1 1 1 0 33 1089 0 1.3218 47 78 0
## 272 15 1 0 0 0 5 25 0 1.6487 25 78 0
## 273 18 1 0 1 0 3 9 0 1.3218 26 78 0
## 274 11 1 0 1 1 8 64 0 0.8990 24 78 0
## 275 13 1 0 1 1 5 25 0 1.3797 23 78 0
## 276 12 1 0 1 1 1 1 0 1.2264 18 78 0
## 277 12 0 0 1 1 21 441 0 0.9220 38 78 0
## 278 12 0 0 0 0 1 1 0 0.9773 18 78 0
## 279 11 0 0 1 1 37 1369 0 1.0159 53 78 0
## 280 12 0 0 0 1 17 289 1 1.6094 34 78 0
## 281 12 0 0 1 0 43 1849 0 1.6582 60 78 0
## 282 12 0 0 0 0 4 16 0 1.7272 21 78 0
## 283 12 0 0 0 0 6 36 0 1.0986 23 78 0
## 284 8 0 0 0 1 49 2401 1 1.9459 62 78 0
## 285 16 0 0 0 1 13 169 0 2.2783 34 78 0
## 286 18 0 0 0 1 11 121 1 1.5333 34 78 0
## 287 8 0 0 1 1 18 324 0 1.0473 31 78 0
## 288 7 1 1 0 1 14 196 0 1.5179 26 78 0
## 289 15 1 0 1 1 20 400 0 1.6297 40 78 0
## 290 14 1 0 1 0 38 1444 0 1.8718 57 78 0
## 291 10 1 0 0 1 46 2116 1 1.6094 61 78 0
## 292 18 1 0 0 1 20 400 0 2.6872 43 78 0
## 293 16 1 0 1 0 7 49 0 1.8908 28 78 0
## 294 12 1 0 1 1 10 100 0 1.1787 27 78 0
## 295 18 1 0 0 1 12 144 0 2.7080 35 78 0
## 296 12 1 0 1 0 13 169 0 2.1914 30 78 0
## 297 16 1 0 0 1 20 400 0 2.1203 41 78 0
## 298 12 1 0 0 0 6 36 0 1.5041 23 78 0
## 299 9 1 0 1 0 6 36 0 1.1787 20 78 0
## 300 8 1 0 0 1 40 1600 0 1.1632 53 78 0
## 301 12 1 0 1 0 1 1 0 0.9445 18 78 0
## 302 10 1 1 0 0 14 196 1 1.6094 29 78 0
## 303 12 1 0 0 0 5 25 0 1.0647 22 78 0
## 304 8 1 0 0 1 17 289 0 1.0647 30 78 0
## 305 12 1 0 0 1 14 196 0 2.0015 31 78 0
## 306 12 1 0 1 1 12 144 0 1.1394 29 78 0
## 307 13 1 0 0 1 30 900 1 1.9913 48 78 0
## 308 14 1 0 0 1 38 1444 1 2.0149 57 78 0
## 309 12 1 1 0 1 23 529 0 1.0647 40 78 0
## 310 9 1 0 0 0 5 25 0 0.9746 19 78 0
## 311 12 1 0 0 1 36 1296 1 2.1576 53 78 0
## 312 11 1 1 1 0 34 1156 0 1.1787 50 78 0
## 313 13 1 0 0 1 5 25 1 1.9936 23 78 0
## 314 6 0 1 0 1 48 2304 0 1.5738 59 78 0
## 315 6 0 0 0 1 38 1444 0 2.2225 49 78 0
## 316 15 0 1 1 0 8 64 0 1.6549 28 78 0
## 317 12 0 0 1 0 39 1521 1 1.7272 56 78 0
## 318 16 0 0 1 0 16 256 1 2.0314 37 78 0
## 319 14 0 0 1 1 25 625 0 0.4520 44 78 0
## 320 13 1 0 0 1 4 16 0 1.3218 22 78 0
## 321 12 1 0 0 0 6 36 0 1.6094 23 78 0
## 322 12 1 0 1 0 46 2116 0 2.0215 63 78 0
## 323 18 1 1 1 0 22 484 0 1.6818 45 78 0
## 324 11 1 0 0 1 27 729 0 1.8326 43 78 0
## 325 12 1 0 0 1 4 16 1 1.2528 21 78 0
## 326 11 1 0 0 1 41 1681 1 1.6341 57 78 0
## 327 16 1 1 1 0 30 900 1 2.3026 51 78 0
## 328 14 1 0 1 1 3 9 0 1.7430 22 78 0
## 329 7 1 1 0 1 21 441 1 1.8326 33 78 0
## 330 12 1 1 1 1 22 484 0 1.0498 39 78 0
## 331 18 1 0 0 0 9 81 0 2.1576 32 78 0
## 332 16 1 0 0 1 27 729 0 2.3826 48 78 0
## 333 16 1 0 1 0 2 4 0 1.5581 23 78 0
## 334 12 0 0 1 1 8 64 1 1.4231 25 78 0
## 335 10 0 0 1 1 27 729 0 1.1632 42 78 0
## 336 12 0 0 0 1 13 169 0 1.6243 30 78 0
## 337 10 0 0 0 1 43 1849 1 2.0149 58 78 0
## 338 14 0 0 0 1 16 256 0 1.9867 35 78 0
## 339 12 0 0 0 1 12 144 0 1.0498 29 78 0
## 340 15 0 0 1 0 4 16 0 1.3863 24 78 0
## 341 12 0 0 1 1 4 16 0 1.3218 21 78 0
## 342 12 0 0 1 0 12 144 1 1.5261 29 78 0
## 343 16 0 0 0 1 5 25 0 2.1972 26 78 0
## 344 18 1 0 0 1 36 1296 0 1.8971 59 78 0
## 345 2 1 1 0 1 55 3025 0 1.1394 62 78 0
## 346 12 1 0 0 0 17 289 0 1.3545 34 78 0
## 347 12 1 0 0 1 14 196 0 2.1203 31 78 0
## 348 18 1 0 0 0 31 961 0 2.4920 54 78 0
## 349 12 1 0 1 0 21 441 0 1.0986 38 78 0
## 350 12 1 0 0 0 5 25 0 1.5993 22 78 0
## 351 14 1 0 1 1 22 484 0 2.0949 41 78 0
## 352 7 1 0 0 1 19 361 1 1.6094 31 78 0
## 353 11 1 0 0 1 30 900 0 2.5257 46 78 0
## 354 14 1 0 0 1 9 81 0 1.8326 28 78 0
## 355 12 1 0 1 1 30 900 0 1.5686 47 78 0
## 356 12 1 0 0 0 9 81 1 1.7143 26 78 0
## 357 12 1 0 1 0 7 49 0 1.1787 24 78 0
## 358 13 1 0 1 0 1 1 0 0.6931 19 78 0
## 359 12 1 0 0 1 14 196 1 1.5581 31 78 0
## 360 8 0 0 0 1 37 1369 1 2.3979 50 78 0
## 361 12 0 0 1 1 28 784 0 1.6094 45 78 0
## 362 13 0 0 1 1 8 64 1 1.7492 26 78 0
## 363 12 0 0 0 1 36 1296 1 1.6292 53 78 0
## 364 12 0 0 1 0 1 1 0 1.2528 18 78 0
## 365 12 0 0 1 0 17 289 0 1.6094 34 78 0
## 366 15 0 0 0 0 5 25 0 1.3218 25 78 0
## 367 12 0 0 1 1 4 16 0 1.2528 21 78 0
## 368 12 0 0 0 1 15 225 1 1.9021 32 78 0
## 369 8 1 0 0 1 18 324 0 0.9925 31 78 0
## 370 16 1 0 0 1 2 4 0 1.3863 23 78 0
## 371 16 1 0 0 1 6 36 0 1.8971 27 78 0
## 372 12 1 0 1 1 23 529 0 1.7272 40 78 0
## 373 12 1 0 1 0 12 144 0 0.9746 29 78 0
## 374 12 1 0 0 1 20 400 1 2.3026 37 78 0
## 375 16 1 0 0 1 17 289 0 2.3026 38 78 0
## 376 16 0 0 1 1 8 64 0 2.0412 29 78 0
## 377 12 0 0 1 0 4 16 0 1.5315 21 78 0
## 378 12 0 1 0 0 13 169 0 1.3863 30 78 0
## 379 16 0 0 0 0 12 144 0 2.0468 33 78 0
## 380 15 0 0 0 0 17 289 0 2.2900 37 78 0
## 381 17 0 0 1 1 8 64 0 1.8718 30 78 0
## 382 10 0 0 0 1 42 1764 0 1.8654 57 78 0
## 383 10 0 0 0 0 5 25 1 1.7309 20 78 0
## 384 16 0 0 0 0 18 324 1 1.9741 39 78 0
## 385 12 0 0 1 0 3 9 0 1.4469 20 78 0
## 386 8 0 0 0 0 22 484 0 1.4271 35 78 0
## 387 12 0 0 1 1 18 324 0 1.2649 35 78 0
## 388 12 0 0 0 1 8 64 0 1.9636 25 78 0
## 389 15 0 0 0 1 1 1 0 1.7272 21 78 0
## 390 15 0 0 1 0 4 16 0 1.4858 24 78 0
## 391 12 0 0 0 1 11 121 0 1.3863 28 78 0
## 392 12 0 0 0 1 45 2025 1 2.1518 62 78 0
## 393 12 0 0 0 1 35 1225 0 2.1019 52 78 0
## 394 11 1 1 0 0 22 484 0 1.0116 38 78 0
## 395 12 1 0 1 1 13 169 0 1.7272 30 78 0
## 396 14 1 0 0 1 34 1156 0 3.3514 53 78 0
## 397 10 1 0 0 1 9 81 1 1.3218 24 78 0
## 398 10 1 0 0 1 36 1296 0 1.7918 51 78 0
## 399 10 1 0 0 1 14 196 0 1.6094 29 78 0
## 400 12 0 0 1 1 2 4 0 1.1291 19 78 0
## 401 8 0 0 0 1 32 1024 1 1.6487 45 78 0
## 402 14 0 0 1 0 39 1521 0 1.9459 58 78 0
## 403 12 0 0 1 1 9 81 0 0.8650 26 78 0
## 404 18 0 0 0 1 3 9 0 1.9373 26 78 0
## 405 10 0 0 0 1 8 64 0 0.8650 23 78 0
## 406 16 0 0 0 1 7 49 0 1.3806 28 78 0
## 407 14 0 0 0 1 7 49 0 1.6094 26 78 0
## 408 13 0 0 0 1 4 16 0 1.8326 22 78 0
## 409 16 0 0 0 0 5 25 0 1.6677 26 78 0
## 410 14 1 1 0 0 6 36 0 1.0986 25 78 0
## 411 12 1 0 0 1 37 1369 0 1.8795 54 78 0
## 412 6 1 1 0 0 11 121 0 1.0986 22 78 0
## 413 8 1 0 1 0 41 1681 1 1.6094 54 78 0
## 414 12 1 1 1 0 30 900 0 2.7444 47 78 0
## 415 16 1 0 0 1 13 169 0 2.1638 34 78 0
## 416 18 0 0 1 0 4 16 0 1.6094 27 78 0
## 417 12 0 0 1 1 16 256 0 1.7272 33 78 0
## 418 13 0 0 0 1 8 64 1 1.3083 26 78 0
## 419 16 0 0 0 1 32 1024 0 2.0149 53 78 0
## 420 12 0 0 1 0 6 36 0 0.9704 23 78 0
## 421 14 0 0 1 1 30 900 0 1.3610 49 78 0
## 422 12 0 0 1 0 1 1 0 1.0986 18 78 0
## 423 12 0 0 0 0 4 16 1 1.6487 21 78 0
## 424 13 0 0 0 1 41 1681 1 2.6912 59 78 0
## 425 12 0 0 0 1 22 484 1 2.0412 39 78 0
## 426 12 0 0 0 1 22 484 0 1.7619 39 78 0
## 427 15 0 0 0 1 31 961 1 2.5257 51 78 0
## 428 16 0 0 1 0 2 4 1 1.8524 23 78 0
## 429 15 0 0 0 1 19 361 1 2.0794 39 78 0
## 430 12 0 0 1 1 14 196 0 1.8101 31 78 0
## 431 11 0 0 1 0 16 256 0 1.2040 32 78 0
## 432 12 1 0 0 0 3 9 0 1.3466 20 78 0
## 433 12 1 0 0 1 3 9 1 1.5146 20 78 0
## 434 8 1 0 0 1 30 900 1 2.1102 43 78 0
## 435 12 1 0 1 0 3 9 0 0.9163 20 78 0
## 436 4 1 1 0 1 55 3025 0 1.1474 64 78 0
## 437 12 1 0 0 0 3 9 0 1.1394 20 78 0
## 438 11 1 0 0 1 19 361 1 2.5257 35 78 0
## 439 9 1 0 1 0 27 729 1 1.4553 41 78 0
## 440 12 1 0 0 1 9 81 1 1.7918 26 78 0
## 441 12 0 1 0 0 13 169 0 1.4351 30 78 0
## 442 16 0 0 0 1 31 961 0 2.5494 52 78 0
## 443 12 0 0 1 0 16 256 0 1.5422 33 78 0
## 444 11 0 0 0 0 4 16 0 0.9746 20 78 0
## 445 16 0 0 0 1 3 9 0 2.0015 24 78 0
## 446 16 0 0 1 0 4 16 0 1.4469 25 78 0
## 447 12 0 0 1 1 36 1296 1 1.3218 53 78 0
## 448 9 1 0 0 1 6 36 0 1.6094 20 78 0
## 449 12 1 0 0 1 19 361 0 1.9867 36 78 0
## 450 18 1 0 0 1 14 196 0 2.0669 37 78 0
## 451 12 0 0 0 1 38 1444 0 1.4610 55 78 0
## 452 13 0 0 0 1 8 64 1 1.8101 26 78 0
## 453 12 0 0 1 1 4 16 0 1.5581 21 78 0
## 454 15 0 0 0 0 12 144 0 1.8326 32 78 0
## 455 12 0 0 0 1 41 1681 0 2.4445 58 78 0
## 456 12 0 0 1 1 24 576 0 1.7430 41 78 0
## 457 11 0 0 0 1 17 289 0 1.7918 33 78 0
## 458 12 0 0 1 1 8 64 0 1.1787 25 78 0
## 459 12 0 0 0 0 2 4 0 1.3863 19 78 0
## 460 12 0 0 0 1 2 4 0 1.2448 19 78 0
## 461 12 0 0 1 1 39 1521 0 1.4469 56 78 0
## 462 12 0 0 0 1 6 36 0 2.5257 23 78 0
## 463 9 0 0 1 1 34 1156 0 1.0296 48 78 0
## 464 17 0 0 0 1 14 196 0 2.0149 36 78 0
## 465 17 0 0 0 1 7 49 0 2.0949 29 78 0
## 466 10 0 0 1 0 46 2116 0 0.9943 61 78 0
## 467 18 0 0 0 1 4 16 0 1.9279 27 78 0
## 468 12 0 0 1 1 12 144 0 0.5596 29 78 0
## 469 12 0 0 1 1 6 36 0 1.2164 23 78 0
## 470 6 0 0 0 1 15 225 0 1.4469 26 78 0
## 471 13 0 0 0 1 12 144 1 1.5041 30 78 0
## 472 17 0 0 0 1 15 225 0 2.1691 37 78 0
## 473 12 0 0 0 1 15 225 0 2.0794 32 78 0
## 474 12 0 1 1 1 12 144 1 1.1151 29 78 0
## 475 12 0 0 0 1 23 529 0 1.6790 40 78 0
## 476 14 0 0 0 0 41 1681 0 2.1848 60 78 0
## 477 12 0 0 1 0 42 1764 0 1.5041 59 78 0
## 478 12 0 0 0 1 10 100 0 1.7047 27 78 0
## 479 10 0 0 0 1 20 400 0 1.4586 35 78 0
## 480 13 0 0 0 1 4 16 1 1.7297 22 78 0
## 481 16 0 0 1 1 11 121 1 1.8326 32 78 0
## 482 12 0 0 1 0 6 36 0 1.1394 23 78 0
## 483 14 0 0 0 1 19 361 0 1.2496 38 78 0
## 484 12 0 0 0 1 32 1024 0 2.2401 49 78 0
## 485 12 0 0 0 1 21 441 0 1.3863 38 78 0
## 486 11 0 0 0 1 39 1521 0 1.2164 55 78 0
## 487 18 0 0 0 1 15 225 0 2.0815 38 78 0
## 488 12 0 0 1 1 25 625 1 1.5943 42 78 0
## 489 12 0 0 1 0 18 324 0 1.0733 35 78 0
## 490 12 0 0 1 1 21 441 0 1.7047 38 78 0
## 491 17 0 0 1 1 11 121 1 2.2437 33 78 0
## 492 14 0 0 0 0 6 36 0 1.1394 25 78 0
## 493 12 0 1 0 0 5 25 1 0.8755 22 78 0
## 494 15 1 1 1 1 12 144 0 2.1041 32 78 0
## 495 8 1 1 0 1 44 1936 0 1.0986 57 78 0
## 496 16 1 1 1 0 7 49 0 2.1691 28 78 0
## 497 16 1 1 1 0 25 625 0 1.3481 46 78 0
## 498 12 0 0 1 0 5 25 1 1.0986 22 78 0
## 499 12 0 0 0 1 27 729 0 2.0794 44 78 0
## 500 10 0 0 1 0 36 1296 1 1.2936 51 78 0
## 501 12 0 0 0 0 31 961 0 2.1401 48 78 0
## 502 14 0 0 0 0 27 729 0 2.4049 46 78 0
## 503 13 0 0 1 1 44 1936 0 1.3987 62 78 0
## 504 16 0 0 1 0 7 49 0 1.4291 28 78 0
## 505 12 0 0 0 0 13 169 1 1.9913 30 78 0
## 506 14 0 0 1 1 36 1296 0 1.3545 55 78 0
## 507 12 0 0 1 0 4 16 0 1.2669 21 78 0
## 508 12 0 0 0 1 30 900 1 2.0477 47 78 0
## 509 10 0 0 0 1 16 256 0 1.6094 31 78 0
## 510 17 0 0 0 1 15 225 1 2.0149 37 78 0
## 511 13 0 0 1 0 2 4 0 0.9725 20 78 0
## 512 12 0 0 0 1 32 1024 1 1.8326 49 78 0
## 513 12 0 0 0 1 9 81 0 1.2040 26 78 0
## 514 18 0 0 0 1 21 441 0 2.3026 44 78 0
## 515 12 0 0 1 1 4 16 0 1.2528 21 78 0
## 516 13 0 0 1 1 35 1225 0 1.5041 53 78 0
## 517 14 0 0 1 1 5 25 0 1.3863 24 78 0
## 518 12 0 0 1 0 1 1 0 1.0116 18 78 0
## 519 10 0 0 0 0 3 9 0 1.3657 18 78 0
## 520 12 0 0 1 0 3 9 0 1.3218 20 78 0
## 521 12 0 0 0 1 21 441 0 2.3026 38 78 0
## 522 12 0 0 0 1 6 36 0 2.0149 23 78 0
## 523 18 1 0 0 0 34 1156 0 3.2179 57 78 0
## 524 12 1 0 1 0 22 484 0 1.6094 39 78 0
## 525 17 1 0 0 1 16 256 0 2.5840 38 78 0
## 526 13 0 0 1 0 4 16 0 1.3218 22 78 0
## 527 18 0 0 0 1 15 225 0 2.1019 38 78 0
## 528 13 0 0 0 1 26 676 0 1.6784 44 78 0
## 529 17 0 0 1 1 19 361 1 1.7492 41 78 0
## 530 7 0 0 0 1 43 1849 0 0.9746 55 78 0
## 531 8 0 0 0 1 18 324 0 1.8718 31 78 0
## 532 17 0 0 0 1 10 100 1 1.6094 32 78 0
## 533 10 0 0 0 0 3 9 0 0.7985 18 78 0
## 534 9 0 0 0 1 46 2116 0 1.2040 60 78 0
## 535 12 0 0 1 1 10 100 1 1.4171 27 78 0
## 536 17 0 0 0 1 5 25 1 1.8871 27 78 0
## 537 14 0 0 0 0 5 25 0 1.6503 24 78 0
## 538 12 0 0 1 0 7 49 0 1.1925 24 78 0
## 539 12 0 0 0 1 15 225 1 2.3933 32 78 0
## 540 12 0 0 0 1 31 961 1 2.1889 48 78 0
## 541 12 0 0 0 1 39 1521 0 2.5257 56 78 0
## 542 14 0 0 0 1 8 64 0 1.6094 27 78 0
## 543 13 0 0 1 1 28 784 0 0.9163 46 78 0
## 544 16 0 0 1 0 10 100 1 2.4145 31 78 0
## 545 12 0 0 0 1 36 1296 1 2.5257 53 78 0
## 546 15 0 0 1 1 3 9 1 2.0794 23 78 0
## 547 12 0 0 0 1 27 729 1 2.6583 44 78 0
## 548 8 0 0 0 1 47 2209 1 2.4744 60 78 0
## 549 12 0 0 1 0 39 1521 1 2.6391 56 78 0
## 550 15 0 0 0 0 12 144 0 2.5257 32 78 0
## 551 10 0 0 0 1 27 729 0 2.1972 43 85 1
## 552 12 0 0 0 1 20 400 0 1.7047 38 85 1
## 553 12 0 0 1 0 4 16 0 1.3350 22 85 1
## 554 12 0 0 1 1 29 841 0 2.3514 47 85 1
## 555 12 0 0 0 1 40 1600 1 2.7080 58 85 1
## 556 16 0 0 1 1 27 729 0 2.1972 49 85 1
## 557 12 0 0 1 1 5 25 1 2.2586 23 85 1
## 558 14 0 0 0 0 22 484 0 2.7080 42 85 1
## 559 8 0 0 0 1 42 1764 0 2.3979 56 85 1
## 560 12 0 0 1 1 14 196 0 1.6094 32 85 1
## 561 17 0 0 0 1 18 324 0 3.2179 41 85 1
## 562 17 0 0 0 0 3 9 0 3.0155 26 85 1
## 563 14 0 0 0 0 4 16 1 3.2189 24 85 1
## 564 14 0 0 0 0 14 196 0 2.6376 34 85 1
## 565 12 0 0 0 1 35 1225 0 1.2528 53 85 1
## 566 14 0 0 0 0 0 0 0 1.6094 20 85 1
## 567 16 0 0 0 1 7 49 1 2.3026 29 85 1
## 568 16 0 1 0 1 26 676 1 2.7080 48 85 1
## 569 13 0 1 0 0 3 9 0 1.7630 22 85 1
## 570 13 0 0 0 0 16 256 0 2.2083 35 85 1
## 571 17 0 1 1 1 32 1024 0 2.4204 55 85 1
## 572 12 0 1 0 1 25 625 1 2.5649 43 85 1
## 573 14 0 0 1 0 15 225 1 2.0794 35 85 1
## 574 12 0 0 1 1 38 1444 0 1.4540 56 85 1
## 575 16 0 1 0 1 17 289 0 2.0637 39 85 1
## 576 12 0 0 1 0 7 49 0 1.9379 25 85 1
## 577 17 0 0 1 0 5 25 0 3.2179 28 85 1
## 578 14 0 0 0 1 22 484 0 2.3026 42 85 1
## 579 14 0 0 0 1 21 441 0 2.6210 41 85 1
## 580 13 0 0 1 1 2 4 0 1.7272 21 85 1
## 581 14 0 1 0 1 16 256 0 2.6858 36 85 1
## 582 16 0 0 0 1 18 324 0 3.2179 40 85 1
## 583 12 0 0 0 1 14 196 0 2.4849 32 85 1
## 584 18 0 0 0 1 12 144 0 2.7080 36 85 1
## 585 16 0 0 0 0 3 9 0 1.7535 25 85 1
## 586 17 0 0 1 1 13 169 0 2.5377 36 85 1
## 587 16 0 0 1 0 42 1764 0 2.4605 64 85 1
## 588 12 0 0 0 1 8 64 0 2.5649 26 85 1
## 589 15 0 0 1 1 6 36 0 2.5257 27 85 1
## 590 16 0 0 0 1 22 484 0 3.1135 44 85 1
## 591 16 0 1 1 0 3 9 0 2.4204 25 85 1
## 592 16 0 0 0 1 33 1089 0 2.7331 55 85 1
## 593 13 0 0 1 0 8 64 1 2.0412 27 85 1
## 594 12 0 0 0 1 26 676 0 2.4715 44 85 1
## 595 14 0 0 0 1 0 0 0 1.6094 20 85 1
## 596 12 0 0 0 1 28 784 0 1.8718 46 85 1
## 597 8 0 0 0 1 33 1089 1 2.1972 47 85 1
## 598 12 0 0 0 0 0 0 0 1.2090 18 85 1
## 599 12 0 0 1 1 7 49 0 1.5041 25 85 1
## 600 14 0 0 1 1 12 144 0 2.3539 32 85 1
## 601 9 0 0 0 1 47 2209 1 1.2528 62 85 1
## 602 16 0 0 0 1 12 144 0 2.7080 34 85 1
## 603 12 0 0 1 0 25 625 0 2.1401 43 85 1
## 604 12 0 0 1 1 44 1936 0 2.2159 62 85 1
## 605 9 0 0 0 0 33 1089 1 2.2618 48 85 1
## 606 8 0 0 1 1 22 484 0 1.9279 36 85 1
## 607 18 0 0 1 1 14 196 0 2.6355 38 85 1
## 608 14 0 1 0 0 22 484 0 2.3026 42 85 1
## 609 12 0 0 1 0 41 1681 0 1.3218 59 85 1
## 610 12 0 0 1 0 8 64 0 2.0794 26 85 1
## 611 12 0 0 1 1 43 1849 0 2.4567 61 85 1
## 612 8 0 1 1 0 29 841 0 2.1844 43 85 1
## 613 12 0 1 0 0 6 36 1 1.3863 24 85 1
## 614 12 0 1 1 0 21 441 0 1.7047 39 85 1
## 615 16 0 1 0 0 3 9 0 1.2090 25 85 1
## 616 12 0 0 1 1 40 1600 0 2.3805 58 85 1
## 617 12 0 0 0 1 5 25 0 1.9459 23 85 1
## 618 13 0 0 0 1 34 1156 1 2.3026 53 85 1
## 619 16 0 0 1 1 10 100 0 1.6864 32 85 1
## 620 12 0 0 1 0 10 100 0 2.0149 28 85 1
## 621 12 0 0 0 1 41 1681 1 2.4204 59 85 1
## 622 10 0 0 1 1 25 625 1 2.3026 41 85 1
## 623 13 0 0 0 0 0 0 0 1.3863 19 85 1
## 624 18 0 0 0 1 14 196 1 2.6037 38 85 1
## 625 12 0 0 0 0 22 484 0 1.9095 40 85 1
## 626 14 0 0 1 1 32 1024 0 2.6593 52 85 1
## 627 15 0 0 1 1 9 81 0 2.2773 30 85 1
## 628 12 0 0 1 0 0 0 0 1.2090 18 85 1
## 629 8 0 0 1 0 49 2401 0 1.2238 63 85 1
## 630 14 0 0 1 1 32 1024 0 1.7272 52 85 1
## 631 12 0 0 0 1 7 49 1 1.9459 25 85 1
## 632 16 0 0 1 1 10 100 0 2.3026 32 85 1
## 633 10 0 0 1 0 44 1936 1 1.8083 60 85 1
## 634 12 0 0 1 1 27 729 0 1.4279 45 85 1
## 635 12 0 0 1 1 16 256 0 1.5686 34 85 1
## 636 12 0 0 0 1 3 9 0 1.7492 21 85 1
## 637 12 0 0 0 1 8 64 0 1.5581 26 85 1
## 638 17 0 0 0 1 7 49 1 2.2380 30 85 1
## 639 12 0 0 1 0 8 64 0 1.6582 26 85 1
## 640 9 0 0 1 1 42 1764 0 1.5994 57 85 1
## 641 16 0 0 1 1 11 121 0 2.9640 33 85 1
## 642 12 0 0 0 1 23 529 0 2.9947 41 85 1
## 643 12 0 0 0 0 4 16 0 1.3863 22 85 1
## 644 12 0 0 1 0 0 0 0 1.6094 18 85 1
## 645 14 0 0 0 1 25 625 0 2.3590 45 85 1
## 646 12 0 1 0 0 22 484 1 2.3026 40 85 1
## 647 14 0 0 1 0 15 225 0 1.9981 35 85 1
## 648 15 0 0 0 0 10 100 0 2.5257 31 85 1
## 649 16 0 0 1 0 20 400 0 1.3863 42 85 1
## 650 12 0 0 1 1 24 576 0 2.7101 42 85 1
## 651 12 1 0 0 1 12 144 0 2.7726 30 85 1
## 652 12 1 0 1 0 12 144 0 1.2698 30 85 1
## 653 12 1 0 0 0 16 256 0 1.5041 34 85 1
## 654 12 1 0 1 0 4 16 0 1.5151 22 85 1
## 655 12 1 0 1 1 43 1849 0 1.2809 61 85 1
## 656 12 1 0 1 1 14 196 0 2.0794 32 85 1
## 657 12 1 0 1 0 10 100 0 1.5581 28 85 1
## 658 12 1 0 0 1 2 4 0 1.9066 20 85 1
## 659 12 1 0 0 1 28 784 0 2.4079 46 85 1
## 660 7 1 0 1 1 15 225 0 1.7918 28 85 1
## 661 12 1 0 0 1 20 400 0 2.3026 38 85 1
## 662 12 1 0 1 1 30 900 0 2.4204 48 85 1
## 663 12 1 0 1 1 9 81 0 1.3737 27 85 1
## 664 16 1 1 0 1 13 169 0 2.8622 35 85 1
## 665 13 1 0 1 0 1 1 0 1.2669 20 85 1
## 666 16 1 0 0 0 8 64 0 1.7918 30 85 1
## 667 14 1 0 0 1 15 225 0 3.0910 35 85 1
## 668 12 1 0 1 0 6 36 0 1.8326 24 85 1
## 669 7 1 0 0 1 14 196 0 1.5041 27 85 1
## 670 13 1 0 1 0 28 784 0 2.3341 47 85 1
## 671 14 1 0 0 1 10 100 0 2.5014 30 85 1
## 672 17 1 0 0 0 14 196 0 2.8994 37 85 1
## 673 16 1 0 0 1 10 100 0 2.7080 32 85 1
## 674 13 1 0 1 1 10 100 0 2.1691 29 85 1
## 675 14 1 0 0 1 44 1936 0 2.9947 64 85 1
## 676 16 0 0 1 0 10 100 1 1.8971 32 85 1
## 677 14 0 0 0 1 22 484 1 2.2644 42 85 1
## 678 11 0 0 0 1 18 324 1 1.7047 35 85 1
## 679 12 0 0 1 0 9 81 0 2.0794 27 85 1
## 680 18 0 0 1 1 19 361 0 2.9957 43 85 1
## 681 17 0 0 1 1 14 196 0 2.2513 37 85 1
## 682 16 0 0 1 0 6 36 1 2.4672 28 85 1
## 683 16 0 0 1 0 17 289 0 2.6311 39 85 1
## 684 11 0 0 1 1 24 576 0 1.7047 41 85 1
## 685 11 0 0 1 0 12 144 0 1.9459 29 85 1
## 686 12 0 0 1 1 38 1444 0 2.2670 56 85 1
## 687 15 0 0 1 0 33 1089 0 2.3618 54 85 1
## 688 2 0 0 0 0 16 256 0 1.3218 24 85 1
## 689 14 0 0 1 1 10 100 0 2.4849 30 85 1
## 690 14 0 0 1 1 14 196 0 2.1471 34 85 1
## 691 14 0 0 0 0 16 256 0 2.7813 36 85 1
## 692 11 0 0 0 0 11 121 0 1.3218 28 85 1
## 693 16 0 1 1 1 6 36 0 2.1972 28 85 1
## 694 12 0 1 1 1 33 1089 0 2.5745 51 85 1
## 695 16 0 0 0 0 10 100 0 2.5802 32 85 1
## 696 12 0 0 0 0 19 361 0 2.2246 37 85 1
## 697 12 0 0 0 0 4 16 0 1.6094 22 85 1
## 698 17 0 0 1 0 3 9 1 1.7918 26 85 1
## 699 12 0 0 1 1 32 1024 0 1.9459 50 85 1
## 700 8 0 0 0 1 19 361 0 1.5476 33 85 1
## 701 16 0 0 1 1 22 484 0 2.0149 44 85 1
## 702 18 0 0 0 1 33 1089 0 1.9459 57 85 1
## 703 18 0 0 0 1 19 361 0 2.4174 43 85 1
## 704 18 0 0 0 1 3 9 0 1.7430 27 85 1
## 705 12 0 0 0 1 12 144 0 1.7047 30 85 1
## 706 12 0 0 0 1 16 256 0 2.1972 34 85 1
## 707 12 0 0 1 1 4 16 0 1.4171 22 85 1
## 708 12 0 0 0 1 11 121 1 2.3026 29 85 1
## 709 12 0 0 0 1 17 289 0 2.0149 35 85 1
## 710 11 0 0 0 0 16 256 0 1.2947 33 85 1
## 711 12 0 0 0 1 18 324 0 2.1848 36 85 1
## 712 18 0 0 0 1 15 225 0 2.8904 39 85 1
## 713 14 0 1 0 0 0 0 0 1.2090 20 85 1
## 714 16 0 1 0 0 8 64 0 2.5990 30 85 1
## 715 16 0 0 0 1 17 289 0 3.1135 39 85 1
## 716 18 0 0 0 0 13 169 0 2.9444 37 85 1
## 717 12 0 0 1 1 18 324 0 2.1894 36 85 1
## 718 11 0 1 1 1 16 256 0 1.9459 33 85 1
## 719 14 0 0 1 0 24 576 0 1.4271 44 85 1
## 720 12 0 0 0 1 23 529 0 2.2854 41 85 1
## 721 12 0 0 0 0 1 1 0 1.8971 19 85 1
## 722 12 0 0 1 1 10 100 1 1.9459 28 85 1
## 723 12 0 0 1 1 42 1764 0 1.2910 60 85 1
## 724 18 0 0 1 0 37 1369 0 3.1279 61 85 1
## 725 12 0 0 1 1 14 196 0 1.6094 32 85 1
## 726 18 0 0 0 1 14 196 0 3.1135 38 85 1
## 727 12 0 0 1 1 11 121 0 2.4849 29 85 1
## 728 12 0 0 1 1 38 1444 0 1.8374 56 85 1
## 729 12 0 0 1 0 3 9 0 1.5041 21 85 1
## 730 12 0 0 0 1 9 81 0 1.7918 27 85 1
## 731 10 0 0 0 1 13 169 0 1.9095 29 85 1
## 732 12 0 0 0 0 9 81 0 2.1691 27 85 1
## 733 16 0 0 0 1 11 121 0 2.5859 33 85 1
## 734 13 0 0 1 1 30 900 0 1.8326 49 85 1
## 735 12 0 0 1 0 15 225 1 2.1961 33 85 1
## 736 14 0 0 0 0 2 4 0 2.0149 22 85 1
## 737 17 0 0 1 1 24 576 0 2.4849 47 85 1
## 738 18 0 0 1 0 31 961 1 2.6391 55 85 1
## 739 14 0 0 0 0 19 361 0 2.7988 39 85 1
## 740 14 0 0 0 0 2 4 0 1.8326 22 85 1
## 741 12 0 0 0 1 4 16 1 2.3514 22 85 1
## 742 9 0 0 1 1 46 2116 1 2.2513 61 85 1
## 743 6 0 0 1 1 43 1849 1 1.0986 55 85 1
## 744 14 0 0 1 1 13 169 0 2.2214 33 85 1
## 745 12 0 0 1 0 15 225 0 1.3863 33 85 1
## 746 12 0 0 1 0 16 256 0 1.3350 34 85 1
## 747 12 0 0 1 1 19 361 0 1.7918 37 85 1
## 748 12 0 0 1 1 28 784 0 1.6094 46 85 1
## 749 12 0 0 0 1 42 1764 0 2.7080 60 85 1
## 750 11 0 0 1 0 45 2025 1 1.7138 62 85 1
## 751 16 0 1 0 1 7 49 0 2.1972 29 85 1
## 752 17 0 0 0 1 31 961 0 3.2179 54 85 1
## 753 12 0 0 1 1 24 576 0 2.1389 42 85 1
## 754 14 0 0 1 1 17 289 0 1.6094 37 85 1
## 755 12 0 0 0 1 26 676 1 3.1001 44 85 1
## 756 16 0 1 0 1 5 25 1 2.2235 27 85 1
## 757 16 0 0 1 1 17 289 0 2.0794 39 85 1
## 758 10 1 0 1 0 33 1089 0 1.2528 49 85 1
## 759 13 1 0 1 1 2 4 0 1.2090 21 85 1
## 760 16 1 1 1 1 14 196 0 1.2090 36 85 1
## 761 16 1 0 1 1 28 784 1 2.9957 50 85 1
## 762 12 1 0 1 0 46 2116 0 1.3863 64 85 1
## 763 16 1 0 0 1 38 1444 0 2.8904 60 85 1
## 764 13 1 0 1 0 0 0 0 1.5041 19 85 1
## 765 12 1 0 1 0 1 1 0 2.0557 19 85 1
## 766 12 1 0 1 1 5 25 0 0.5596 23 85 1
## 767 18 1 0 1 1 13 169 0 1.6487 37 85 1
## 768 10 1 0 0 0 19 361 0 2.1691 35 85 1
## 769 12 1 0 0 1 5 25 0 1.6094 23 85 1
## 770 12 1 1 1 1 6 36 0 1.3218 24 85 1
## 771 13 1 0 0 1 9 81 0 1.7834 28 85 1
## 772 12 1 0 0 0 7 49 0 1.3863 25 85 1
## 773 3 1 0 0 1 55 3025 0 1.9459 64 85 1
## 774 17 1 0 1 0 1 1 0 1.6094 24 85 1
## 775 6 1 1 1 0 33 1089 0 1.5304 45 85 1
## 776 12 1 0 1 1 21 441 0 1.7492 39 85 1
## 777 18 0 0 0 1 29 841 0 3.2179 53 85 1
## 778 18 0 0 0 1 7 49 0 2.7593 31 85 1
## 779 16 0 0 0 0 10 100 0 2.7444 32 85 1
## 780 16 0 0 0 0 9 81 0 1.2090 31 85 1
## 781 18 0 0 0 1 7 49 0 2.8994 31 85 1
## 782 18 0 0 0 0 33 1089 1 2.0794 57 85 1
## 783 13 0 0 0 0 31 961 0 1.7918 50 85 1
## 784 18 0 0 0 1 5 25 0 2.8478 29 85 1
## 785 16 0 0 1 0 2 4 0 1.7047 24 85 1
## 786 12 0 0 0 0 20 400 0 2.0347 38 85 1
## 787 16 0 1 0 0 4 16 0 1.8326 26 85 1
## 788 12 0 0 1 1 45 2025 0 1.8563 63 85 1
## 789 12 0 0 1 1 24 576 0 1.8839 42 85 1
## 790 12 0 0 0 1 43 1849 0 2.5257 61 85 1
## 791 18 0 0 0 1 10 100 0 2.5903 34 85 1
## 792 12 0 0 0 0 3 9 0 1.7047 21 85 1
## 793 15 0 0 0 0 5 25 0 2.4204 26 85 1
## 794 12 0 0 1 0 45 2025 0 2.3632 63 85 1
## 795 12 0 1 1 1 43 1849 1 2.0794 61 85 1
## 796 17 0 0 1 1 26 676 1 2.3224 49 85 1
## 797 12 0 0 1 1 42 1764 0 1.7561 60 85 1
## 798 12 0 0 0 1 37 1369 0 1.9879 55 85 1
## 799 14 0 0 1 0 1 1 0 3.7955 21 85 1
## 800 13 0 0 1 1 14 196 0 2.3514 33 85 1
## 801 12 0 0 0 1 8 64 0 2.2364 26 85 1
## 802 12 0 0 1 1 24 576 0 1.6487 42 85 1
## 803 12 0 0 1 1 20 400 0 1.4469 38 85 1
## 804 17 0 0 1 0 13 169 1 2.7695 36 85 1
## 805 15 0 0 0 1 12 144 0 3.1135 33 85 1
## 806 16 1 0 1 1 4 16 0 1.6094 26 85 1
## 807 12 1 1 0 1 14 196 0 1.6677 32 85 1
## 808 18 1 0 0 1 14 196 0 1.8326 38 85 1
## 809 18 1 0 1 0 13 169 0 2.3026 37 85 1
## 810 12 1 0 0 1 20 400 0 1.7047 38 85 1
## 811 9 1 0 1 1 30 900 0 1.9169 45 85 1
## 812 12 1 0 1 1 28 784 0 1.0986 46 85 1
## 813 16 1 0 0 1 14 196 1 2.3026 36 85 1
## 814 10 1 0 0 0 13 169 0 1.5790 29 85 1
## 815 12 1 0 0 1 32 1024 0 2.2425 50 85 1
## 816 15 1 0 1 0 26 676 0 1.7918 47 85 1
## 817 13 1 0 1 0 0 0 0 1.4469 19 85 1
## 818 14 1 0 0 1 12 144 1 2.3997 32 85 1
## 819 12 1 1 1 1 32 1024 0 2.4982 50 85 1
## 820 12 1 0 0 1 12 144 0 2.1318 30 85 1
## 821 12 1 0 0 0 3 9 0 2.4361 21 85 1
## 822 9 1 0 0 1 29 841 0 2.9947 44 85 1
## 823 14 1 0 1 0 10 100 0 1.9279 30 85 1
## 824 12 0 0 1 1 16 256 1 1.7430 34 85 1
## 825 12 0 0 1 1 8 64 0 1.2090 26 85 1
## 826 9 0 0 1 1 16 256 0 1.5790 31 85 1
## 827 12 0 0 1 1 15 225 0 1.7492 33 85 1
## 828 12 0 0 1 1 18 324 0 1.6864 36 85 1
## 829 12 0 0 1 1 38 1444 0 2.5770 56 85 1
## 830 12 0 0 1 1 13 169 0 2.4262 31 85 1
## 831 13 0 0 0 1 18 324 0 2.1691 37 85 1
## 832 12 0 0 0 1 19 361 1 2.5031 37 85 1
## 833 10 0 0 0 1 15 225 0 1.6582 31 85 1
## 834 14 1 0 0 0 5 25 0 1.7148 25 85 1
## 835 12 1 0 1 1 36 1296 0 1.5239 54 85 1
## 836 12 1 0 0 1 38 1444 0 2.0149 56 85 1
## 837 12 1 0 0 0 5 25 0 2.4849 23 85 1
## 838 12 1 0 0 1 35 1225 1 2.7726 53 85 1
## 839 11 1 1 0 0 3 9 0 1.2090 20 85 1
## 840 10 1 0 0 0 27 729 0 1.4929 43 85 1
## 841 12 1 0 1 1 29 841 0 1.4469 47 85 1
## 842 10 1 1 1 1 38 1444 0 2.5726 54 85 1
## 843 10 1 0 0 1 9 81 0 1.9459 25 85 1
## 844 6 1 0 0 1 45 2025 0 1.7492 57 85 1
## 845 8 1 0 0 1 27 729 0 1.8718 41 85 1
## 846 12 1 1 0 1 20 400 0 2.0293 38 85 1
## 847 16 1 0 0 1 14 196 1 3.0204 36 85 1
## 848 12 1 0 0 0 1 1 0 1.8326 19 85 1
## 849 11 1 1 1 1 25 625 0 1.3455 42 85 1
## 850 14 1 0 0 1 21 441 0 2.8124 41 85 1
## 851 17 0 0 1 0 10 100 0 2.4204 33 85 1
## 852 14 0 0 0 0 2 4 0 1.7317 22 85 1
## 853 11 0 0 0 0 17 289 0 1.8718 34 85 1
## 854 12 0 0 1 1 24 576 0 2.0477 42 85 1
## 855 12 0 0 0 1 26 676 1 1.9359 44 85 1
## 856 12 0 0 0 1 39 1521 1 2.7080 57 85 1
## 857 7 0 1 0 1 42 1764 1 1.9459 55 85 1
## 858 7 1 0 0 1 43 1849 0 1.2090 56 85 1
## 859 12 1 0 0 0 5 25 0 1.8718 23 85 1
## 860 16 1 0 1 1 7 49 0 1.8326 29 85 1
## 861 13 1 0 1 1 6 36 0 1.6094 25 85 1
## 862 13 1 1 1 0 1 1 0 1.2384 20 85 1
## 863 14 1 0 0 1 41 1681 0 2.1748 61 85 1
## 864 16 1 0 1 1 4 16 0 2.3026 26 85 1
## 865 11 1 0 1 1 25 625 1 1.3863 42 85 1
## 866 12 1 0 1 1 39 1521 0 2.2513 57 85 1
## 867 14 1 0 1 1 15 225 0 2.3447 35 85 1
## 868 18 1 0 0 1 10 100 0 1.6506 34 85 1
## 869 12 1 0 1 0 20 400 0 2.0149 38 85 1
## 870 17 1 0 0 1 2 4 0 1.9459 25 85 1
## 871 11 1 1 0 1 28 784 1 2.3777 45 85 1
## 872 10 1 0 0 1 27 729 1 2.1861 43 85 1
## 873 16 1 0 1 0 13 169 0 1.3218 35 85 1
## 874 15 1 0 0 0 4 16 0 1.3218 25 85 1
## 875 12 0 0 0 0 13 169 0 2.2460 31 85 1
## 876 12 0 0 0 1 33 1089 1 2.7080 51 85 1
## 877 12 0 0 1 0 6 36 0 1.2809 24 85 1
## 878 18 0 0 0 1 23 529 1 2.4849 47 85 1
## 879 16 0 0 1 1 6 36 0 2.3632 28 85 1
## 880 16 0 0 1 1 16 256 0 2.6391 38 85 1
## 881 16 0 0 0 0 3 9 1 1.6094 25 85 1
## 882 12 0 0 0 0 19 361 1 2.4423 37 85 1
## 883 12 0 0 0 1 43 1849 1 2.6181 61 85 1
## 884 12 1 0 0 1 34 1156 0 2.3632 52 85 1
## 885 12 1 0 1 0 25 625 0 2.0082 43 85 1
## 886 10 1 1 0 1 41 1681 1 1.9095 57 85 1
## 887 17 1 1 1 0 6 36 0 1.7707 29 85 1
## 888 12 1 1 0 0 2 4 0 1.2321 20 85 1
## 889 8 1 1 1 1 37 1369 0 1.4702 51 85 1
## 890 12 1 1 0 1 19 361 1 2.5649 37 85 1
## 891 5 1 0 0 1 44 1936 0 2.6391 55 85 1
## 892 10 1 1 1 1 37 1369 0 1.2566 53 85 1
## 893 13 1 0 0 0 8 64 0 1.4586 27 85 1
## 894 18 1 0 0 1 12 144 0 1.7670 36 85 1
## 895 12 0 0 0 0 8 64 0 1.7918 26 85 1
## 896 16 0 0 0 1 13 169 1 2.3979 35 85 1
## 897 13 0 0 0 0 32 1024 0 3.0564 51 85 1
## 898 16 0 0 0 1 18 324 0 2.6759 40 85 1
## 899 12 0 1 0 0 8 64 0 1.9242 26 85 1
## 900 16 0 0 1 0 0 0 0 2.3026 18 85 1
## 901 16 0 0 1 1 7 49 0 2.3026 29 85 1
## 902 16 1 0 1 0 5 25 0 3.2179 27 85 1
## 903 12 1 0 1 1 17 289 0 1.3218 35 85 1
## 904 11 1 0 0 1 39 1521 0 1.8718 56 85 1
## 905 12 1 0 0 0 4 16 0 1.6094 22 85 1
## 906 8 1 0 1 0 45 2025 0 1.5151 59 85 1
## 907 12 0 0 0 0 8 64 0 1.8718 26 85 1
## 908 16 0 0 0 0 9 81 0 2.3585 31 85 1
## 909 12 0 0 0 1 23 529 0 2.2576 41 85 1
## 910 16 0 0 1 1 14 196 0 2.4849 36 85 1
## 911 12 0 0 1 0 16 256 0 2.1401 34 85 1
## 912 12 0 0 1 1 15 225 0 1.4110 33 85 1
## 913 12 0 0 1 0 15 225 0 1.5041 33 85 1
## 914 16 0 0 0 1 16 256 0 2.4423 38 85 1
## 915 14 0 0 0 0 13 169 0 2.1861 33 85 1
## 916 11 0 0 0 0 15 225 1 2.6539 32 85 1
## 917 16 0 0 0 1 11 121 0 2.6137 33 85 1
## 918 18 0 0 1 0 40 1600 0 3.1001 64 85 1
## 919 18 0 0 1 1 11 121 0 2.7080 35 85 1
## 920 13 1 0 0 1 17 289 0 2.0869 36 85 1
## 921 12 1 0 0 1 12 144 0 1.9095 30 85 1
## 922 11 1 1 0 1 14 196 0 1.5041 31 85 1
## 923 12 1 0 1 1 26 676 0 1.9459 44 85 1
## 924 12 1 1 1 1 27 729 0 2.0149 45 85 1
## 925 12 1 0 1 1 16 256 0 2.0149 34 85 1
## 926 12 1 1 0 0 2 4 0 2.1401 20 85 1
## 927 7 1 0 0 1 44 1936 0 2.0794 57 85 1
## 928 8 1 0 0 1 8 64 0 1.2528 22 85 1
## 929 12 1 0 0 1 9 81 0 2.5257 27 85 1
## 930 12 1 0 0 0 1 1 1 1.7918 19 85 1
## 931 16 1 0 1 0 2 4 0 1.6582 24 85 1
## 932 12 1 0 0 0 6 36 0 1.6094 24 85 1
## 933 11 1 0 1 1 17 289 0 1.2528 34 85 1
## 934 14 1 0 0 1 14 196 1 2.3979 34 85 1
## 935 12 0 0 0 0 3 9 0 2.0149 21 85 1
## 936 12 0 0 0 1 13 169 0 2.1401 31 85 1
## 937 12 0 0 0 0 11 121 0 2.5257 29 85 1
## 938 12 0 0 0 1 24 576 1 2.3749 42 85 1
## 939 12 0 0 1 1 14 196 1 2.5257 32 85 1
## 940 17 0 0 0 1 7 49 0 2.0541 30 85 1
## 941 17 0 0 0 1 13 169 0 2.4849 36 85 1
## 942 12 1 1 1 1 10 100 0 1.2090 28 85 1
## 943 12 1 0 0 1 13 169 1 2.9895 31 85 1
## 944 13 1 0 0 1 7 49 0 1.7918 26 85 1
## 945 8 1 0 1 1 39 1521 0 1.4398 53 85 1
## 946 14 1 0 1 1 6 36 0 1.2528 26 85 1
## 947 12 1 0 0 1 20 400 1 2.4849 38 85 1
## 948 12 0 0 1 1 7 49 0 1.2090 25 85 1
## 949 12 0 0 0 1 20 400 1 2.1972 38 85 1
## 950 14 0 0 1 0 6 36 0 1.3813 26 85 1
## 951 12 0 0 1 1 39 1521 0 1.6094 57 85 1
## 952 16 0 0 0 1 15 225 0 2.5390 37 85 1
## 953 15 0 0 0 1 31 961 0 2.8478 52 85 1
## 954 12 0 0 1 0 25 625 0 2.2513 43 85 1
## 955 11 0 0 0 1 13 169 1 2.6391 30 85 1
## 956 12 0 1 0 1 8 64 1 2.1401 26 85 1
## 957 12 0 0 1 1 2 4 0 1.4469 20 85 1
## 958 16 0 0 0 1 14 196 0 1.7579 36 85 1
## 959 13 0 0 0 1 14 196 0 2.4204 33 85 1
## 960 18 0 0 1 1 18 324 1 2.4849 42 85 1
## 961 12 0 0 1 1 28 784 0 2.4204 46 85 1
## 962 16 0 0 0 1 10 100 1 2.0149 32 85 1
## 963 14 1 1 0 0 17 289 0 2.1041 37 85 1
## 964 12 1 0 1 1 14 196 0 1.5790 32 85 1
## 965 12 1 0 1 1 2 4 0 1.5581 20 85 1
## 966 16 1 0 0 1 29 841 0 1.7047 51 85 1
## 967 11 1 0 0 1 29 841 0 2.2513 46 85 1
## 968 12 1 0 1 1 14 196 0 2.2618 32 85 1
## 969 13 0 0 1 1 33 1089 0 1.5151 52 85 1
## 970 16 0 0 0 1 4 16 0 2.7558 26 85 1
## 971 15 0 0 0 1 13 169 0 2.2885 34 85 1
## 972 14 0 0 1 0 24 576 0 2.3026 44 85 1
## 973 13 0 0 0 0 5 25 0 1.7579 24 85 1
## 974 14 1 0 0 0 1 1 0 2.0186 21 85 1
## 975 11 1 0 0 1 37 1369 1 2.2773 54 85 1
## 976 11 1 0 0 1 18 324 1 2.5649 35 85 1
## 977 15 1 0 1 1 10 100 0 2.3302 31 85 1
## 978 12 1 0 0 1 16 256 1 2.5990 34 85 1
## 979 12 0 0 0 1 12 144 1 2.5313 30 85 1
## 980 14 0 0 1 0 4 16 0 2.1552 24 85 1
## 981 12 0 0 0 1 16 256 1 2.5848 34 85 1
## 982 14 0 1 0 1 34 1156 1 1.9242 54 85 1
## 983 13 0 0 0 1 10 100 1 2.5233 29 85 1
## 984 14 0 0 0 1 17 289 0 1.9661 37 85 1
## 985 13 0 0 1 1 16 256 0 2.5257 35 85 1
## 986 10 0 0 0 1 20 400 0 2.3026 36 85 1
## 987 10 0 0 0 1 12 144 0 2.3026 28 85 1
## 988 12 0 0 0 1 30 900 0 2.1691 48 85 1
## 989 16 0 0 1 1 26 676 0 2.2380 48 85 1
## 990 13 0 0 0 1 13 169 0 2.4079 32 85 1
## 991 8 0 0 1 1 21 441 0 1.6292 35 85 1
## 992 11 0 1 0 0 3 9 0 2.0149 20 85 1
## 993 8 0 1 1 1 29 841 0 1.2238 43 85 1
## 994 12 0 0 1 1 3 9 0 1.5041 21 85 1
## 995 18 0 1 0 1 27 729 0 1.8326 51 85 1
## 996 12 0 0 0 1 33 1089 0 3.0229 51 85 1
## 997 13 0 0 0 0 17 289 0 2.1282 36 85 1
## 998 12 0 0 1 1 15 225 0 2.0794 33 85 1
## 999 9 0 0 0 1 38 1444 0 2.1401 53 85 1
## 1000 12 0 0 0 0 9 81 0 1.3218 27 85 1
## 1001 12 0 0 0 1 10 100 0 2.1972 28 85 1
## 1002 16 0 0 1 0 6 36 0 2.4891 28 85 1
## 1003 12 0 0 1 1 7 49 0 1.5041 25 85 1
## 1004 9 0 1 0 0 16 256 0 1.5686 31 85 1
## 1005 10 0 0 0 1 30 900 0 1.8718 46 85 1
## 1006 12 0 0 0 1 19 361 0 2.0398 37 85 1
## 1007 12 0 0 1 0 15 225 0 2.2336 33 85 1
## 1008 12 0 1 0 1 12 144 0 1.6094 30 85 1
## 1009 12 0 1 1 1 33 1089 0 1.8083 51 85 1
## 1010 12 0 1 0 0 36 1296 0 2.3674 54 85 1
## 1011 12 0 1 1 0 25 625 0 1.2528 43 85 1
## 1012 12 0 1 0 1 35 1225 1 2.3026 53 85 1
## 1013 13 0 1 0 0 8 64 1 2.1972 27 85 1
## 1014 12 1 1 1 1 23 529 0 2.0149 41 85 1
## 1015 18 1 0 0 0 7 49 0 1.7430 31 85 1
## 1016 17 1 0 0 0 3 9 0 2.1401 26 85 1
## 1017 12 1 1 0 1 8 64 0 1.3863 26 85 1
## 1018 9 1 1 1 1 34 1156 1 1.7492 49 85 1
## 1019 12 0 0 0 0 2 4 0 1.6582 20 85 1
## 1020 12 0 0 0 1 34 1156 0 1.2528 52 85 1
## 1021 11 0 0 0 0 2 4 0 1.5041 19 85 1
## 1022 12 0 0 1 0 11 121 0 1.7047 29 85 1
## 1023 13 0 0 1 1 4 16 0 1.8326 23 85 1
## 1024 16 0 0 1 1 22 484 1 2.1848 44 85 1
## 1025 12 0 0 1 1 45 2025 0 1.6582 63 85 1
## 1026 14 0 0 1 1 26 676 0 2.3273 46 85 1
## 1027 14 0 0 1 1 12 144 0 1.8326 32 85 1
## 1028 12 0 0 1 1 3 9 0 1.4702 21 85 1
## 1029 13 0 0 0 0 36 1296 0 2.8824 55 85 1
## 1030 12 0 0 1 1 9 81 1 2.0149 27 85 1
## 1031 16 0 0 1 1 7 49 0 1.8326 29 85 1
## 1032 14 0 0 0 1 14 196 0 1.5041 34 85 1
## 1033 12 0 0 1 0 6 36 0 1.8563 24 85 1
## 1034 15 0 0 0 1 1 1 1 1.5766 22 85 1
## 1035 11 0 0 0 1 4 16 0 1.4231 21 85 1
## 1036 12 0 0 1 1 5 25 0 1.6351 23 85 1
## 1037 8 0 0 1 1 38 1444 0 1.6601 52 85 1
## 1038 16 0 0 1 1 6 36 0 2.0513 28 85 1
## 1039 13 0 0 0 0 9 81 1 2.5703 28 85 1
## 1040 13 0 0 1 1 15 225 0 2.0794 34 85 1
## 1041 15 0 0 1 1 11 121 0 2.0369 32 85 1
## 1042 12 0 0 0 0 17 289 0 2.0149 35 85 1
## 1043 12 0 0 0 0 1 1 0 1.0473 19 85 1
## 1044 12 0 0 0 1 9 81 0 1.8506 27 85 1
## 1045 9 0 0 0 0 48 2304 0 1.2528 63 85 1
## 1046 12 0 0 0 1 17 289 1 2.4292 35 85 1
## 1047 12 0 0 1 1 33 1089 0 1.7047 51 85 1
## 1048 12 0 0 0 1 7 49 0 2.2138 25 85 1
## 1049 14 0 0 1 1 12 144 0 2.0744 32 85 1
## 1050 16 0 0 1 1 6 36 0 1.7317 28 85 1
## 1051 4 0 0 0 1 54 2916 0 1.7918 64 85 1
## 1052 16 1 1 0 0 16 256 0 2.5990 38 85 1
## 1053 11 1 0 1 1 8 64 0 1.2947 25 85 1
## 1054 9 1 0 0 0 30 900 1 1.8326 45 85 1
## 1055 13 1 0 0 0 1 1 1 1.6390 20 85 1
## 1056 17 1 0 0 1 32 1024 0 3.2692 55 85 1
## 1057 13 1 0 0 0 0 0 0 0.6981 19 85 1
## 1058 12 1 0 1 0 26 676 0 1.6094 44 85 1
## 1059 11 0 0 1 0 36 1296 0 2.1691 53 85 1
## 1060 14 0 0 1 1 19 361 0 2.5257 39 85 1
## 1061 12 0 0 0 0 12 144 0 1.3863 30 85 1
## 1062 16 0 0 0 1 21 441 0 1.5041 43 85 1
## 1063 12 0 0 1 0 11 121 0 1.8718 29 85 1
## 1064 12 0 0 0 1 10 100 0 1.7047 28 85 1
## 1065 17 0 0 1 1 15 225 0 1.9279 38 85 1
## 1066 16 0 0 1 0 16 256 0 1.8165 38 85 1
## 1067 12 0 0 0 1 23 529 0 2.0513 41 85 1
## 1068 12 0 0 0 1 24 576 0 0.0000 42 85 1
## 1069 17 0 0 1 1 13 169 1 2.5257 36 85 1
## 1070 14 0 1 1 1 19 361 1 2.1804 39 85 1
## 1071 11 0 0 1 1 20 400 0 1.4702 37 85 1
## 1072 18 0 0 0 0 5 25 0 2.4304 29 85 1
## 1073 8 0 0 0 1 47 2209 1 2.1894 61 85 1
## 1074 11 0 0 1 1 33 1089 0 1.2528 50 85 1
## 1075 14 0 0 0 1 21 441 1 3.2581 41 85 1
## 1076 12 0 0 1 1 19 361 0 2.0794 37 85 1
## 1077 14 0 0 0 1 20 400 1 2.7726 40 85 1
## 1078 12 0 0 1 1 13 169 0 1.6771 31 85 1
## 1079 17 0 1 1 1 25 625 1 3.1463 48 85 1
## 1080 12 0 1 1 1 18 324 0 2.1552 36 85 1
## 1081 14 0 0 1 0 13 169 0 2.9178 33 85 1
## 1082 18 0 0 0 1 8 64 0 3.1001 32 85 1
## 1083 12 0 1 0 0 14 196 1 2.7887 32 85 1
## 1084 12 0 0 0 0 9 81 0 2.9689 27 85 1
## y85fem y85educ y85union
## 1 0 0 0
## 2 0 0 0
## 3 0 0 0
## 4 0 0 0
## 5 0 0 0
## 6 0 0 0
## 7 0 0 0
## 8 0 0 0
## 9 0 0 0
## 10 0 0 0
## 11 0 0 0
## 12 0 0 0
## 13 0 0 0
## 14 0 0 0
## 15 0 0 0
## 16 0 0 0
## 17 0 0 0
## 18 0 0 0
## 19 0 0 0
## 20 0 0 0
## 21 0 0 0
## 22 0 0 0
## 23 0 0 0
## 24 0 0 0
## 25 0 0 0
## 26 0 0 0
## 27 0 0 0
## 28 0 0 0
## 29 0 0 0
## 30 0 0 0
## 31 0 0 0
## 32 0 0 0
## 33 0 0 0
## 34 0 0 0
## 35 0 0 0
## 36 0 0 0
## 37 0 0 0
## 38 0 0 0
## 39 0 0 0
## 40 0 0 0
## 41 0 0 0
## 42 0 0 0
## 43 0 0 0
## 44 0 0 0
## 45 0 0 0
## 46 0 0 0
## 47 0 0 0
## 48 0 0 0
## 49 0 0 0
## 50 0 0 0
## 51 0 0 0
## 52 0 0 0
## 53 0 0 0
## 54 0 0 0
## 55 0 0 0
## 56 0 0 0
## 57 0 0 0
## 58 0 0 0
## 59 0 0 0
## 60 0 0 0
## 61 0 0 0
## 62 0 0 0
## 63 0 0 0
## 64 0 0 0
## 65 0 0 0
## 66 0 0 0
## 67 0 0 0
## 68 0 0 0
## 69 0 0 0
## 70 0 0 0
## 71 0 0 0
## 72 0 0 0
## 73 0 0 0
## 74 0 0 0
## 75 0 0 0
## 76 0 0 0
## 77 0 0 0
## 78 0 0 0
## 79 0 0 0
## 80 0 0 0
## 81 0 0 0
## 82 0 0 0
## 83 0 0 0
## 84 0 0 0
## 85 0 0 0
## 86 0 0 0
## 87 0 0 0
## 88 0 0 0
## 89 0 0 0
## 90 0 0 0
## 91 0 0 0
## 92 0 0 0
## 93 0 0 0
## 94 0 0 0
## 95 0 0 0
## 96 0 0 0
## 97 0 0 0
## 98 0 0 0
## 99 0 0 0
## 100 0 0 0
## 101 0 0 0
## 102 0 0 0
## 103 0 0 0
## 104 0 0 0
## 105 0 0 0
## 106 0 0 0
## 107 0 0 0
## 108 0 0 0
## 109 0 0 0
## 110 0 0 0
## 111 0 0 0
## 112 0 0 0
## 113 0 0 0
## 114 0 0 0
## 115 0 0 0
## 116 0 0 0
## 117 0 0 0
## 118 0 0 0
## 119 0 0 0
## 120 0 0 0
## 121 0 0 0
## 122 0 0 0
## 123 0 0 0
## 124 0 0 0
## 125 0 0 0
## 126 0 0 0
## 127 0 0 0
## 128 0 0 0
## 129 0 0 0
## 130 0 0 0
## 131 0 0 0
## 132 0 0 0
## 133 0 0 0
## 134 0 0 0
## 135 0 0 0
## 136 0 0 0
## 137 0 0 0
## 138 0 0 0
## 139 0 0 0
## 140 0 0 0
## 141 0 0 0
## 142 0 0 0
## 143 0 0 0
## 144 0 0 0
## 145 0 0 0
## 146 0 0 0
## 147 0 0 0
## 148 0 0 0
## 149 0 0 0
## 150 0 0 0
## 151 0 0 0
## 152 0 0 0
## 153 0 0 0
## 154 0 0 0
## 155 0 0 0
## 156 0 0 0
## 157 0 0 0
## 158 0 0 0
## 159 0 0 0
## 160 0 0 0
## 161 0 0 0
## 162 0 0 0
## 163 0 0 0
## 164 0 0 0
## 165 0 0 0
## 166 0 0 0
## 167 0 0 0
## 168 0 0 0
## 169 0 0 0
## 170 0 0 0
## 171 0 0 0
## 172 0 0 0
## 173 0 0 0
## 174 0 0 0
## 175 0 0 0
## 176 0 0 0
## 177 0 0 0
## 178 0 0 0
## 179 0 0 0
## 180 0 0 0
## 181 0 0 0
## 182 0 0 0
## 183 0 0 0
## 184 0 0 0
## 185 0 0 0
## 186 0 0 0
## 187 0 0 0
## 188 0 0 0
## 189 0 0 0
## 190 0 0 0
## 191 0 0 0
## 192 0 0 0
## 193 0 0 0
## 194 0 0 0
## 195 0 0 0
## 196 0 0 0
## 197 0 0 0
## 198 0 0 0
## 199 0 0 0
## 200 0 0 0
## 201 0 0 0
## 202 0 0 0
## 203 0 0 0
## 204 0 0 0
## 205 0 0 0
## 206 0 0 0
## 207 0 0 0
## 208 0 0 0
## 209 0 0 0
## 210 0 0 0
## 211 0 0 0
## 212 0 0 0
## 213 0 0 0
## 214 0 0 0
## 215 0 0 0
## 216 0 0 0
## 217 0 0 0
## 218 0 0 0
## 219 0 0 0
## 220 0 0 0
## 221 0 0 0
## 222 0 0 0
## 223 0 0 0
## 224 0 0 0
## 225 0 0 0
## 226 0 0 0
## 227 0 0 0
## 228 0 0 0
## 229 0 0 0
## 230 0 0 0
## 231 0 0 0
## 232 0 0 0
## 233 0 0 0
## 234 0 0 0
## 235 0 0 0
## 236 0 0 0
## 237 0 0 0
## 238 0 0 0
## 239 0 0 0
## 240 0 0 0
## 241 0 0 0
## 242 0 0 0
## 243 0 0 0
## 244 0 0 0
## 245 0 0 0
## 246 0 0 0
## 247 0 0 0
## 248 0 0 0
## 249 0 0 0
## 250 0 0 0
## 251 0 0 0
## 252 0 0 0
## 253 0 0 0
## 254 0 0 0
## 255 0 0 0
## 256 0 0 0
## 257 0 0 0
## 258 0 0 0
## 259 0 0 0
## 260 0 0 0
## 261 0 0 0
## 262 0 0 0
## 263 0 0 0
## 264 0 0 0
## 265 0 0 0
## 266 0 0 0
## 267 0 0 0
## 268 0 0 0
## 269 0 0 0
## 270 0 0 0
## 271 0 0 0
## 272 0 0 0
## 273 0 0 0
## 274 0 0 0
## 275 0 0 0
## 276 0 0 0
## 277 0 0 0
## 278 0 0 0
## 279 0 0 0
## 280 0 0 0
## 281 0 0 0
## 282 0 0 0
## 283 0 0 0
## 284 0 0 0
## 285 0 0 0
## 286 0 0 0
## 287 0 0 0
## 288 0 0 0
## 289 0 0 0
## 290 0 0 0
## 291 0 0 0
## 292 0 0 0
## 293 0 0 0
## 294 0 0 0
## 295 0 0 0
## 296 0 0 0
## 297 0 0 0
## 298 0 0 0
## 299 0 0 0
## 300 0 0 0
## 301 0 0 0
## 302 0 0 0
## 303 0 0 0
## 304 0 0 0
## 305 0 0 0
## 306 0 0 0
## 307 0 0 0
## 308 0 0 0
## 309 0 0 0
## 310 0 0 0
## 311 0 0 0
## 312 0 0 0
## 313 0 0 0
## 314 0 0 0
## 315 0 0 0
## 316 0 0 0
## 317 0 0 0
## 318 0 0 0
## 319 0 0 0
## 320 0 0 0
## 321 0 0 0
## 322 0 0 0
## 323 0 0 0
## 324 0 0 0
## 325 0 0 0
## 326 0 0 0
## 327 0 0 0
## 328 0 0 0
## 329 0 0 0
## 330 0 0 0
## 331 0 0 0
## 332 0 0 0
## 333 0 0 0
## 334 0 0 0
## 335 0 0 0
## 336 0 0 0
## 337 0 0 0
## 338 0 0 0
## 339 0 0 0
## 340 0 0 0
## 341 0 0 0
## 342 0 0 0
## 343 0 0 0
## 344 0 0 0
## 345 0 0 0
## 346 0 0 0
## 347 0 0 0
## 348 0 0 0
## 349 0 0 0
## 350 0 0 0
## 351 0 0 0
## 352 0 0 0
## 353 0 0 0
## 354 0 0 0
## 355 0 0 0
## 356 0 0 0
## 357 0 0 0
## 358 0 0 0
## 359 0 0 0
## 360 0 0 0
## 361 0 0 0
## 362 0 0 0
## 363 0 0 0
## 364 0 0 0
## 365 0 0 0
## 366 0 0 0
## 367 0 0 0
## 368 0 0 0
## 369 0 0 0
## 370 0 0 0
## 371 0 0 0
## 372 0 0 0
## 373 0 0 0
## 374 0 0 0
## 375 0 0 0
## 376 0 0 0
## 377 0 0 0
## 378 0 0 0
## 379 0 0 0
## 380 0 0 0
## 381 0 0 0
## 382 0 0 0
## 383 0 0 0
## 384 0 0 0
## 385 0 0 0
## 386 0 0 0
## 387 0 0 0
## 388 0 0 0
## 389 0 0 0
## 390 0 0 0
## 391 0 0 0
## 392 0 0 0
## 393 0 0 0
## 394 0 0 0
## 395 0 0 0
## 396 0 0 0
## 397 0 0 0
## 398 0 0 0
## 399 0 0 0
## 400 0 0 0
## 401 0 0 0
## 402 0 0 0
## 403 0 0 0
## 404 0 0 0
## 405 0 0 0
## 406 0 0 0
## 407 0 0 0
## 408 0 0 0
## 409 0 0 0
## 410 0 0 0
## 411 0 0 0
## 412 0 0 0
## 413 0 0 0
## 414 0 0 0
## 415 0 0 0
## 416 0 0 0
## 417 0 0 0
## 418 0 0 0
## 419 0 0 0
## 420 0 0 0
## 421 0 0 0
## 422 0 0 0
## 423 0 0 0
## 424 0 0 0
## 425 0 0 0
## 426 0 0 0
## 427 0 0 0
## 428 0 0 0
## 429 0 0 0
## 430 0 0 0
## 431 0 0 0
## 432 0 0 0
## 433 0 0 0
## 434 0 0 0
## 435 0 0 0
## 436 0 0 0
## 437 0 0 0
## 438 0 0 0
## 439 0 0 0
## 440 0 0 0
## 441 0 0 0
## 442 0 0 0
## 443 0 0 0
## 444 0 0 0
## 445 0 0 0
## 446 0 0 0
## 447 0 0 0
## 448 0 0 0
## 449 0 0 0
## 450 0 0 0
## 451 0 0 0
## 452 0 0 0
## 453 0 0 0
## 454 0 0 0
## 455 0 0 0
## 456 0 0 0
## 457 0 0 0
## 458 0 0 0
## 459 0 0 0
## 460 0 0 0
## 461 0 0 0
## 462 0 0 0
## 463 0 0 0
## 464 0 0 0
## 465 0 0 0
## 466 0 0 0
## 467 0 0 0
## 468 0 0 0
## 469 0 0 0
## 470 0 0 0
## 471 0 0 0
## 472 0 0 0
## 473 0 0 0
## 474 0 0 0
## 475 0 0 0
## 476 0 0 0
## 477 0 0 0
## 478 0 0 0
## 479 0 0 0
## 480 0 0 0
## 481 0 0 0
## 482 0 0 0
## 483 0 0 0
## 484 0 0 0
## 485 0 0 0
## 486 0 0 0
## 487 0 0 0
## 488 0 0 0
## 489 0 0 0
## 490 0 0 0
## 491 0 0 0
## 492 0 0 0
## 493 0 0 0
## 494 0 0 0
## 495 0 0 0
## 496 0 0 0
## 497 0 0 0
## 498 0 0 0
## 499 0 0 0
## 500 0 0 0
## 501 0 0 0
## 502 0 0 0
## 503 0 0 0
## 504 0 0 0
## 505 0 0 0
## 506 0 0 0
## 507 0 0 0
## 508 0 0 0
## 509 0 0 0
## 510 0 0 0
## 511 0 0 0
## 512 0 0 0
## 513 0 0 0
## 514 0 0 0
## 515 0 0 0
## 516 0 0 0
## 517 0 0 0
## 518 0 0 0
## 519 0 0 0
## 520 0 0 0
## 521 0 0 0
## 522 0 0 0
## 523 0 0 0
## 524 0 0 0
## 525 0 0 0
## 526 0 0 0
## 527 0 0 0
## 528 0 0 0
## 529 0 0 0
## 530 0 0 0
## 531 0 0 0
## 532 0 0 0
## 533 0 0 0
## 534 0 0 0
## 535 0 0 0
## 536 0 0 0
## 537 0 0 0
## 538 0 0 0
## 539 0 0 0
## 540 0 0 0
## 541 0 0 0
## 542 0 0 0
## 543 0 0 0
## 544 0 0 0
## 545 0 0 0
## 546 0 0 0
## 547 0 0 0
## 548 0 0 0
## 549 0 0 0
## 550 0 0 0
## 551 0 10 0
## 552 0 12 0
## 553 1 12 0
## 554 1 12 0
## 555 0 12 1
## 556 1 16 0
## 557 1 12 1
## 558 0 14 0
## 559 0 8 0
## 560 1 12 0
## 561 0 17 0
## 562 0 17 0
## 563 0 14 1
## 564 0 14 0
## 565 0 12 0
## 566 0 14 0
## 567 0 16 1
## 568 0 16 1
## 569 0 13 0
## 570 0 13 0
## 571 1 17 0
## 572 0 12 1
## 573 1 14 1
## 574 1 12 0
## 575 0 16 0
## 576 1 12 0
## 577 1 17 0
## 578 0 14 0
## 579 0 14 0
## 580 1 13 0
## 581 0 14 0
## 582 0 16 0
## 583 0 12 0
## 584 0 18 0
## 585 0 16 0
## 586 1 17 0
## 587 1 16 0
## 588 0 12 0
## 589 1 15 0
## 590 0 16 0
## 591 1 16 0
## 592 0 16 0
## 593 1 13 1
## 594 0 12 0
## 595 0 14 0
## 596 0 12 0
## 597 0 8 1
## 598 0 12 0
## 599 1 12 0
## 600 1 14 0
## 601 0 9 1
## 602 0 16 0
## 603 1 12 0
## 604 1 12 0
## 605 0 9 1
## 606 1 8 0
## 607 1 18 0
## 608 0 14 0
## 609 1 12 0
## 610 1 12 0
## 611 1 12 0
## 612 1 8 0
## 613 0 12 1
## 614 1 12 0
## 615 0 16 0
## 616 1 12 0
## 617 0 12 0
## 618 0 13 1
## 619 1 16 0
## 620 1 12 0
## 621 0 12 1
## 622 1 10 1
## 623 0 13 0
## 624 0 18 1
## 625 0 12 0
## 626 1 14 0
## 627 1 15 0
## 628 1 12 0
## 629 1 8 0
## 630 1 14 0
## 631 0 12 1
## 632 1 16 0
## 633 1 10 1
## 634 1 12 0
## 635 1 12 0
## 636 0 12 0
## 637 0 12 0
## 638 0 17 1
## 639 1 12 0
## 640 1 9 0
## 641 1 16 0
## 642 0 12 0
## 643 0 12 0
## 644 1 12 0
## 645 0 14 0
## 646 0 12 1
## 647 1 14 0
## 648 0 15 0
## 649 1 16 0
## 650 1 12 0
## 651 0 12 0
## 652 1 12 0
## 653 0 12 0
## 654 1 12 0
## 655 1 12 0
## 656 1 12 0
## 657 1 12 0
## 658 0 12 0
## 659 0 12 0
## 660 1 7 0
## 661 0 12 0
## 662 1 12 0
## 663 1 12 0
## 664 0 16 0
## 665 1 13 0
## 666 0 16 0
## 667 0 14 0
## 668 1 12 0
## 669 0 7 0
## 670 1 13 0
## 671 0 14 0
## 672 0 17 0
## 673 0 16 0
## 674 1 13 0
## 675 0 14 0
## 676 1 16 1
## 677 0 14 1
## 678 0 11 1
## 679 1 12 0
## 680 1 18 0
## 681 1 17 0
## 682 1 16 1
## 683 1 16 0
## 684 1 11 0
## 685 1 11 0
## 686 1 12 0
## 687 1 15 0
## 688 0 2 0
## 689 1 14 0
## 690 1 14 0
## 691 0 14 0
## 692 0 11 0
## 693 1 16 0
## 694 1 12 0
## 695 0 16 0
## 696 0 12 0
## 697 0 12 0
## 698 1 17 1
## 699 1 12 0
## 700 0 8 0
## 701 1 16 0
## 702 0 18 0
## 703 0 18 0
## 704 0 18 0
## 705 0 12 0
## 706 0 12 0
## 707 1 12 0
## 708 0 12 1
## 709 0 12 0
## 710 0 11 0
## 711 0 12 0
## 712 0 18 0
## 713 0 14 0
## 714 0 16 0
## 715 0 16 0
## 716 0 18 0
## 717 1 12 0
## 718 1 11 0
## 719 1 14 0
## 720 0 12 0
## 721 0 12 0
## 722 1 12 1
## 723 1 12 0
## 724 1 18 0
## 725 1 12 0
## 726 0 18 0
## 727 1 12 0
## 728 1 12 0
## 729 1 12 0
## 730 0 12 0
## 731 0 10 0
## 732 0 12 0
## 733 0 16 0
## 734 1 13 0
## 735 1 12 1
## 736 0 14 0
## 737 1 17 0
## 738 1 18 1
## 739 0 14 0
## 740 0 14 0
## 741 0 12 1
## 742 1 9 1
## 743 1 6 1
## 744 1 14 0
## 745 1 12 0
## 746 1 12 0
## 747 1 12 0
## 748 1 12 0
## 749 0 12 0
## 750 1 11 1
## 751 0 16 0
## 752 0 17 0
## 753 1 12 0
## 754 1 14 0
## 755 0 12 1
## 756 0 16 1
## 757 1 16 0
## 758 1 10 0
## 759 1 13 0
## 760 1 16 0
## 761 1 16 1
## 762 1 12 0
## 763 0 16 0
## 764 1 13 0
## 765 1 12 0
## 766 1 12 0
## 767 1 18 0
## 768 0 10 0
## 769 0 12 0
## 770 1 12 0
## 771 0 13 0
## 772 0 12 0
## 773 0 3 0
## 774 1 17 0
## 775 1 6 0
## 776 1 12 0
## 777 0 18 0
## 778 0 18 0
## 779 0 16 0
## 780 0 16 0
## 781 0 18 0
## 782 0 18 1
## 783 0 13 0
## 784 0 18 0
## 785 1 16 0
## 786 0 12 0
## 787 0 16 0
## 788 1 12 0
## 789 1 12 0
## 790 0 12 0
## 791 0 18 0
## 792 0 12 0
## 793 0 15 0
## 794 1 12 0
## 795 1 12 1
## 796 1 17 1
## 797 1 12 0
## 798 0 12 0
## 799 1 14 0
## 800 1 13 0
## 801 0 12 0
## 802 1 12 0
## 803 1 12 0
## 804 1 17 1
## 805 0 15 0
## 806 1 16 0
## 807 0 12 0
## 808 0 18 0
## 809 1 18 0
## 810 0 12 0
## 811 1 9 0
## 812 1 12 0
## 813 0 16 1
## 814 0 10 0
## 815 0 12 0
## 816 1 15 0
## 817 1 13 0
## 818 0 14 1
## 819 1 12 0
## 820 0 12 0
## 821 0 12 0
## 822 0 9 0
## 823 1 14 0
## 824 1 12 1
## 825 1 12 0
## 826 1 9 0
## 827 1 12 0
## 828 1 12 0
## 829 1 12 0
## 830 1 12 0
## 831 0 13 0
## 832 0 12 1
## 833 0 10 0
## 834 0 14 0
## 835 1 12 0
## 836 0 12 0
## 837 0 12 0
## 838 0 12 1
## 839 0 11 0
## 840 0 10 0
## 841 1 12 0
## 842 1 10 0
## 843 0 10 0
## 844 0 6 0
## 845 0 8 0
## 846 0 12 0
## 847 0 16 1
## 848 0 12 0
## 849 1 11 0
## 850 0 14 0
## 851 1 17 0
## 852 0 14 0
## 853 0 11 0
## 854 1 12 0
## 855 0 12 1
## 856 0 12 1
## 857 0 7 1
## 858 0 7 0
## 859 0 12 0
## 860 1 16 0
## 861 1 13 0
## 862 1 13 0
## 863 0 14 0
## 864 1 16 0
## 865 1 11 1
## 866 1 12 0
## 867 1 14 0
## 868 0 18 0
## 869 1 12 0
## 870 0 17 0
## 871 0 11 1
## 872 0 10 1
## 873 1 16 0
## 874 0 15 0
## 875 0 12 0
## 876 0 12 1
## 877 1 12 0
## 878 0 18 1
## 879 1 16 0
## 880 1 16 0
## 881 0 16 1
## 882 0 12 1
## 883 0 12 1
## 884 0 12 0
## 885 1 12 0
## 886 0 10 1
## 887 1 17 0
## 888 0 12 0
## 889 1 8 0
## 890 0 12 1
## 891 0 5 0
## 892 1 10 0
## 893 0 13 0
## 894 0 18 0
## 895 0 12 0
## 896 0 16 1
## 897 0 13 0
## 898 0 16 0
## 899 0 12 0
## 900 1 16 0
## 901 1 16 0
## 902 1 16 0
## 903 1 12 0
## 904 0 11 0
## 905 0 12 0
## 906 1 8 0
## 907 0 12 0
## 908 0 16 0
## 909 0 12 0
## 910 1 16 0
## 911 1 12 0
## 912 1 12 0
## 913 1 12 0
## 914 0 16 0
## 915 0 14 0
## 916 0 11 1
## 917 0 16 0
## 918 1 18 0
## 919 1 18 0
## 920 0 13 0
## 921 0 12 0
## 922 0 11 0
## 923 1 12 0
## 924 1 12 0
## 925 1 12 0
## 926 0 12 0
## 927 0 7 0
## 928 0 8 0
## 929 0 12 0
## 930 0 12 1
## 931 1 16 0
## 932 0 12 0
## 933 1 11 0
## 934 0 14 1
## 935 0 12 0
## 936 0 12 0
## 937 0 12 0
## 938 0 12 1
## 939 1 12 1
## 940 0 17 0
## 941 0 17 0
## 942 1 12 0
## 943 0 12 1
## 944 0 13 0
## 945 1 8 0
## 946 1 14 0
## 947 0 12 1
## 948 1 12 0
## 949 0 12 1
## 950 1 14 0
## 951 1 12 0
## 952 0 16 0
## 953 0 15 0
## 954 1 12 0
## 955 0 11 1
## 956 0 12 1
## 957 1 12 0
## 958 0 16 0
## 959 0 13 0
## 960 1 18 1
## 961 1 12 0
## 962 0 16 1
## 963 0 14 0
## 964 1 12 0
## 965 1 12 0
## 966 0 16 0
## 967 0 11 0
## 968 1 12 0
## 969 1 13 0
## 970 0 16 0
## 971 0 15 0
## 972 1 14 0
## 973 0 13 0
## 974 0 14 0
## 975 0 11 1
## 976 0 11 1
## 977 1 15 0
## 978 0 12 1
## 979 0 12 1
## 980 1 14 0
## 981 0 12 1
## 982 0 14 1
## 983 0 13 1
## 984 0 14 0
## 985 1 13 0
## 986 0 10 0
## 987 0 10 0
## 988 0 12 0
## 989 1 16 0
## 990 0 13 0
## 991 1 8 0
## 992 0 11 0
## 993 1 8 0
## 994 1 12 0
## 995 0 18 0
## 996 0 12 0
## 997 0 13 0
## 998 1 12 0
## 999 0 9 0
## 1000 0 12 0
## 1001 0 12 0
## 1002 1 16 0
## 1003 1 12 0
## 1004 0 9 0
## 1005 0 10 0
## 1006 0 12 0
## 1007 1 12 0
## 1008 0 12 0
## 1009 1 12 0
## 1010 0 12 0
## 1011 1 12 0
## 1012 0 12 1
## 1013 0 13 1
## 1014 1 12 0
## 1015 0 18 0
## 1016 0 17 0
## 1017 0 12 0
## 1018 1 9 1
## 1019 0 12 0
## 1020 0 12 0
## 1021 0 11 0
## 1022 1 12 0
## 1023 1 13 0
## 1024 1 16 1
## 1025 1 12 0
## 1026 1 14 0
## 1027 1 14 0
## 1028 1 12 0
## 1029 0 13 0
## 1030 1 12 1
## 1031 1 16 0
## 1032 0 14 0
## 1033 1 12 0
## 1034 0 15 1
## 1035 0 11 0
## 1036 1 12 0
## 1037 1 8 0
## 1038 1 16 0
## 1039 0 13 1
## 1040 1 13 0
## 1041 1 15 0
## 1042 0 12 0
## 1043 0 12 0
## 1044 0 12 0
## 1045 0 9 0
## 1046 0 12 1
## 1047 1 12 0
## 1048 0 12 0
## 1049 1 14 0
## 1050 1 16 0
## 1051 0 4 0
## 1052 0 16 0
## 1053 1 11 0
## 1054 0 9 1
## 1055 0 13 1
## 1056 0 17 0
## 1057 0 13 0
## 1058 1 12 0
## 1059 1 11 0
## 1060 1 14 0
## 1061 0 12 0
## 1062 0 16 0
## 1063 1 12 0
## 1064 0 12 0
## 1065 1 17 0
## 1066 1 16 0
## 1067 0 12 0
## 1068 0 12 0
## 1069 1 17 1
## 1070 1 14 1
## 1071 1 11 0
## 1072 0 18 0
## 1073 0 8 1
## 1074 1 11 0
## 1075 0 14 1
## 1076 1 12 0
## 1077 0 14 1
## 1078 1 12 0
## 1079 1 17 1
## 1080 1 12 0
## 1081 1 14 0
## 1082 0 18 0
## 1083 0 12 1
## 1084 0 12 0
summarise(): calcular diversas estadisticas
summarize(nombre_data_frame,formula_1, formula_2,…,formula_n)
n() - Num. de observaciones
n_distinct(x) - Num. de obs. unicas/distintas mean() - Promedio
median() - Mediana
sum() - Suma
sd() - Desv. Estandar IQR() - Rango Intercuartil mad() - Desviacion media absoluta:
min() - Minimo max() - Maximo quantile(x, 0.25) - Cuantil first() - Primero last() - Ultimo sum([condicion logica]) - Suma de casos que cumplen condicion mean([condicion logica]) - Promedio de casos que cumplen condicion
Lo utilizamos para hacer algunos calculos:
## [1] TRUE
## min(age) max(age) mean(age) sd(age)
## 1 18 64 36.53967 12.20392
Podemos calcular estadistica descriptivas por grupos utilizando el group by():
Sin group By:
summarise(cps78_85,
prom_edad = mean(age, na.rm = TRUE), # Promedio
min_edad = min(age, na.rm = TRUE), # Minimo
max_edad = max(age, na.rm = TRUE), # Maximo
desv_edad = sd(age, na.rm = TRUE)) # Desviacion estandar
## prom_edad min_edad max_edad desv_edad
## 1 36.53967 18 64 12.20392
Con Group By:
# Agrupar los datos y guardarlos en un nuevo data frame
sexo <- group_by(cps78_85, female)
summarise(sexo,
prom_edad = mean(age, na.rm = TRUE), # Promedio
min_edad = min(age, na.rm = TRUE), # Minimo
max_edad = max(age, na.rm = TRUE), # Maximo
desv_edad = sd(age, na.rm = TRUE)) # Desviacion estandar
## # A tibble: 2 x 5
## female prom_edad min_edad max_edad desv_edad
## <int> <dbl> <int> <int> <dbl>
## 1 0 36.7 18 64 12.2
## 2 1 36.3 18 64 12.2
Ahora utilizamos otra base para hacer unos calculos:
library(foreign)
hogar <- as_tibble(as.data.frame(read.dta("concentradohogar.dta")))
ingreso <- as_tibble(as.data.frame(read.dta("ingresos.dta")))
vivienda <- as_tibble(as.data.frame(read.dta("viviendas.dta")))
Analizamos la base:
## # A tibble: 6 x 126
## folioviv foliohog ubica_geo tam_loc est_socio est_dis upm factor clase_hog
## <chr> <chr> <chr> <chr> <chr> <chr> <chr> <dbl> <chr>
## 1 0100013601 1 01001 1 3 002 0000001 175 2
## 2 0100013602 1 01001 1 3 002 0000001 175 2
## 3 0100013603 1 01001 1 3 002 0000001 175 2
## 4 0100013604 1 01001 1 3 002 0000001 175 2
## 5 0100013606 1 01001 1 3 002 0000001 175 2
## 6 0100026701 1 01001 1 3 002 0000002 189 2
## # ... with 117 more variables: sexo_jefe <chr>, edad_jefe <dbl>,
## # educa_jefe <chr>, tot_integ <dbl>, hombres <dbl>, mujeres <dbl>,
## # mayores <dbl>, menores <dbl>, p12_64 <dbl>, p65mas <dbl>, ocupados <dbl>,
## # percep_ing <dbl>, perc_ocupa <dbl>, ing_cor <dbl>, ingtrab <dbl>,
## # trabajo <dbl>, sueldos <dbl>, horas_extr <dbl>, comisiones <dbl>,
## # aguinaldo <dbl>, indemtrab <dbl>, otra_rem <dbl>, remu_espec <dbl>,
## # negocio <dbl>, noagrop <dbl>, industria <dbl>, comercio <dbl>, ...
## # A tibble: 6 x 126
## folioviv foliohog ubica_geo tam_loc est_socio est_dis upm factor clase_hog
## <chr> <chr> <chr> <chr> <chr> <chr> <chr> <dbl> <chr>
## 1 3260798901 1 32046 4 2 543 0008395 192 2
## 2 3260798902 1 32046 4 2 543 0008395 192 2
## 3 3260798903 1 32046 4 2 543 0008395 192 2
## 4 3260798904 1 32046 4 2 543 0008395 192 3
## 5 3260798905 1 32046 4 2 543 0008395 192 1
## 6 3260798906 1 32046 4 2 543 0008395 192 2
## # ... with 117 more variables: sexo_jefe <chr>, edad_jefe <dbl>,
## # educa_jefe <chr>, tot_integ <dbl>, hombres <dbl>, mujeres <dbl>,
## # mayores <dbl>, menores <dbl>, p12_64 <dbl>, p65mas <dbl>, ocupados <dbl>,
## # percep_ing <dbl>, perc_ocupa <dbl>, ing_cor <dbl>, ingtrab <dbl>,
## # trabajo <dbl>, sueldos <dbl>, horas_extr <dbl>, comisiones <dbl>,
## # aguinaldo <dbl>, indemtrab <dbl>, otra_rem <dbl>, remu_espec <dbl>,
## # negocio <dbl>, noagrop <dbl>, industria <dbl>, comercio <dbl>, ...
Calculamos el numero total de viviendas en México
## # A tibble: 73,405 x 66
## folioviv tipo_viv mat_pared mat_techos mat_pisos antiguedad antigua_ne cocina
## <chr> <chr> <chr> <chr> <chr> <dbl> <chr> <chr>
## 1 0100013~ 1 8 10 3 42 " " 1
## 2 0100013~ 1 8 10 3 40 " " 1
## 3 0100013~ 1 8 10 3 50 " " 1
## 4 0100013~ 1 8 10 3 45 " " 1
## 5 0100013~ 1 8 10 3 40 " " 1
## 6 0100026~ 1 8 10 3 5 " " 1
## 7 0100026~ 1 8 10 3 25 " " 1
## 8 0100026~ 1 8 10 3 30 " " 1
## 9 0100026~ 3 8 10 2 1 " " 2
## 10 0100027~ 1 8 10 3 30 " " 1
## # ... with 73,395 more rows, and 58 more variables: cocina_dor <chr>,
## # cuart_dorm <dbl>, num_cuarto <dbl>, disp_agua <chr>, dotac_agua <chr>,
## # excusado <chr>, uso_compar <chr>, sanit_agua <chr>, biodigest <chr>,
## # bano_comp <dbl>, bano_excus <dbl>, bano_regad <dbl>, drenaje <chr>,
## # disp_elect <chr>, focos_inca <dbl>, focos_ahor <dbl>, combustible <chr>,
## # estufa_chi <chr>, eli_basura <chr>, tenencia <chr>, renta <dbl>,
## # estim_pago <dbl>, pago_viv <dbl>, pago_mesp <chr>, tipo_adqui <chr>, ...
Por lo tanto podemos obtener nuestras estadisticas descriptivas por la nueva variable creada:
## # A tibble: 1 x 3
## `min(num)` `max(num)` `sum(num)`
## <dbl> <dbl> <dbl>
## 1 9 6727 34155615
Podemos hacerlo de distintas formas:
## # A tibble: 1 x 3
## `min(factor)` `max(factor)` `sum(factor)`
## <dbl> <dbl> <dbl>
## 1 9 6727 34155615
Vamos ahora a cambiar los nombres de los estados:
library(stringr)
vivienda <-
vivienda %>%
mutate(cve_estado = str_sub(as.character(ubica_geo), end = 2), ##usamos ubica_geo para condicionar
estado = case_when(cve_estado == "01" ~ "Aguascalientes", ##podemos hacer múltiples tareas
cve_estado == "02" ~ "Baja California",
cve_estado == "03" ~ "Baja California Sur",
cve_estado == "04" ~ "Campeche",
cve_estado == "05" ~ "Coahuila de Zaragoza",
cve_estado == "06" ~ "Colima",
cve_estado == "07" ~ "Chiapas",
cve_estado == "08" ~ "Chihuahua",
cve_estado == "09" ~ "Ciudad de México",
cve_estado == "10" ~ "Durango",
cve_estado == "11" ~ "Guanajuato",
cve_estado == "12" ~ "Guerrero",
cve_estado == "13" ~ "Hidalgo",
cve_estado == "14" ~ "Jalisco",
cve_estado == "15" ~ "Estado de México",
cve_estado == "16" ~ "Michoacán de Ocampo",
cve_estado == "17" ~ "Morelos",
cve_estado == "18" ~ "Nayarit",
cve_estado == "19" ~ "Nuevo León",
cve_estado == "20" ~ "Oaxaca",
cve_estado == "21" ~ "Puebla",
cve_estado == "22" ~ "Querétaro",
cve_estado == "23" ~ "Quintana Roo",
cve_estado == "24" ~ "San Luis Potos",
cve_estado == "25" ~ "Sinaloa",
cve_estado == "26" ~ "Sonora",
cve_estado == "27" ~ "Tabasco",
cve_estado == "28" ~ "Tamaulipas",
cve_estado == "29" ~ "Tlaxcala",
cve_estado == "30" ~ "Veracruz de Ignacio de la Llave",
cve_estado == "31" ~ "Yucatán",
cve_estado == "32" ~ "Zacatecas"))
Checkamos la base de nuevo:
## vivienda
##
## 66 Variables 73405 Observations
## --------------------------------------------------------------------------------
## folioviv
## n missing distinct
## 73405 0 73405
##
## lowest : 0100013601 0100013602 0100013603 0100013604 0100013606
## highest: 3260798902 3260798903 3260798904 3260798905 3260798906
## --------------------------------------------------------------------------------
## tipo_viv
## n missing distinct
## 73405 0 6
##
## lowest : & 1 2 3 4, highest: 1 2 3 4 5
##
## Value & 1 2 3 4 5
## Frequency 51 69425 1940 1428 99 462
## Proportion 0.001 0.946 0.026 0.019 0.001 0.006
## --------------------------------------------------------------------------------
## mat_pared
## n missing distinct
## 73405 0 8
##
## lowest : 1 2 3 4 5, highest: 4 5 6 7 8
##
## Value 1 2 3 4 5 6 7 8
## Frequency 139 128 442 172 271 3397 6347 62509
## Proportion 0.002 0.002 0.006 0.002 0.004 0.046 0.086 0.852
## --------------------------------------------------------------------------------
## mat_techos
## n missing distinct
## 73405 0 10
##
## lowest : 01 02 03 04 05, highest: 06 07 08 09 10
##
## Value 1 2 3 4 5 6 7 8 9 10
## Frequency 150 616 11500 4278 216 444 3009 990 1163 51039
## Proportion 0.002 0.008 0.157 0.058 0.003 0.006 0.041 0.013 0.016 0.695
## --------------------------------------------------------------------------------
## mat_pisos
## n missing distinct
## 73405 0 4
##
## Value & 1 2 3
## Frequency 4 2277 40586 30538
## Proportion 0.000 0.031 0.553 0.416
## --------------------------------------------------------------------------------
## antiguedad
## n missing distinct Info Mean Gmd .05 .10
## 62501 10904 97 0.997 21.84 16.95 3 5
## .25 .50 .75 .90 .95
## 10 20 30 40 50
##
## lowest : 0 1 2 3 4, highest: 95 96 97 98 99
## --------------------------------------------------------------------------------
## antigua_ne
## n missing distinct value
## 10904 62501 1 1
##
## Value 1
## Frequency 10904
## Proportion 1
## --------------------------------------------------------------------------------
## cocina
## n missing distinct
## 73405 0 2
##
## Value 1 2
## Frequency 67586 5819
## Proportion 0.921 0.079
## --------------------------------------------------------------------------------
## cocina_dor
## n missing distinct
## 67586 5819 2
##
## Value 1 2
## Frequency 4737 62849
## Proportion 0.07 0.93
## --------------------------------------------------------------------------------
## cuart_dorm
## n missing distinct Info Mean Gmd .05 .10
## 73405 0 11 0.881 2.03 0.9442 1 1
## .25 .50 .75 .90 .95
## 1 2 3 3 4
##
## lowest : 1 2 3 4 5, highest: 7 8 9 10 11
##
## Value 1 2 3 4 5 6 7 8 9 10 11
## Frequency 22270 31846 15233 3251 600 150 33 17 2 2 1
## Proportion 0.303 0.434 0.208 0.044 0.008 0.002 0.000 0.000 0.000 0.000 0.000
## --------------------------------------------------------------------------------
## num_cuarto
## n missing distinct Info Mean Gmd .05 .10
## 73405 0 20 0.952 3.671 1.617 1 2
## .25 .50 .75 .90 .95
## 3 4 4 6 6
##
## lowest : 1 2 3 4 5, highest: 16 17 18 20 22
##
## Value 1 2 3 4 5 6 7 8 9 10 11
## Frequency 4112 10948 20402 19872 10684 4499 1678 711 276 129 38
## Proportion 0.056 0.149 0.278 0.271 0.146 0.061 0.023 0.010 0.004 0.002 0.001
##
## Value 12 13 14 15 16 17 18 20 22
## Frequency 30 7 8 3 4 1 1 1 1
## Proportion 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
## --------------------------------------------------------------------------------
## disp_agua
## n missing distinct
## 73405 0 7
##
## lowest : 1 2 3 4 5, highest: 3 4 5 6 7
##
## Value 1 2 3 4 5 6 7
## Frequency 52697 14701 231 328 658 1556 3234
## Proportion 0.718 0.200 0.003 0.004 0.009 0.021 0.044
## --------------------------------------------------------------------------------
## dotac_agua
## n missing distinct
## 67398 6007 5
##
## lowest : 1 2 3 4 5, highest: 1 2 3 4 5
##
## Value 1 2 3 4 5
## Frequency 48148 11268 3559 2502 1921
## Proportion 0.714 0.167 0.053 0.037 0.029
## --------------------------------------------------------------------------------
## excusado
## n missing distinct
## 73405 0 2
##
## Value 1 2
## Frequency 71408 1997
## Proportion 0.973 0.027
## --------------------------------------------------------------------------------
## uso_compar
## n missing distinct
## 71408 1997 2
##
## Value 1 2
## Frequency 4896 66512
## Proportion 0.069 0.931
## --------------------------------------------------------------------------------
## sanit_agua
## n missing distinct
## 71408 1997 3
##
## Value 1 2 3
## Frequency 48548 18070 4790
## Proportion 0.680 0.253 0.067
## --------------------------------------------------------------------------------
## biodigest
## n missing distinct
## 71408 1997 2
##
## Value 1 2
## Frequency 1489 69919
## Proportion 0.021 0.979
## --------------------------------------------------------------------------------
## bano_comp
## n missing distinct Info Mean Gmd
## 71408 1997 9 0.789 0.8721 0.7087
##
## lowest : 0 1 2 3 4, highest: 4 5 6 7 8
##
## Value 0 1 2 3 4 5 6 7 8
## Frequency 20995 40603 8199 1283 246 56 19 6 1
## Proportion 0.294 0.569 0.115 0.018 0.003 0.001 0.000 0.000 0.000
## --------------------------------------------------------------------------------
## bano_excus
## n missing distinct Info Mean Gmd
## 71408 1997 9 0.723 0.4135 0.5207
##
## lowest : 0 1 2 3 4, highest: 4 5 6 8 9
##
## Value 0 1 2 3 4 5 6 8 9
## Frequency 43499 26529 1269 74 13 6 1 5 12
## Proportion 0.609 0.372 0.018 0.001 0.000 0.000 0.000 0.000 0.000
## --------------------------------------------------------------------------------
## bano_regad
## n missing distinct Info Mean Gmd
## 71408 1997 9 0.107 0.04004 0.07735
##
## lowest : 0 1 2 3 4, highest: 4 5 6 8 9
##
## Value 0 1 2 3 4 5 6 8 9
## Frequency 68773 2556 47 6 4 3 2 5 12
## Proportion 0.963 0.036 0.001 0.000 0.000 0.000 0.000 0.000 0.000
## --------------------------------------------------------------------------------
## drenaje
## n missing distinct
## 73405 0 5
##
## lowest : 1 2 3 4 5, highest: 1 2 3 4 5
##
## Value 1 2 3 4 5
## Frequency 48060 19453 714 265 4913
## Proportion 0.655 0.265 0.010 0.004 0.067
## --------------------------------------------------------------------------------
## disp_elect
## n missing distinct
## 73405 0 5
##
## lowest : 1 2 3 4 5, highest: 1 2 3 4 5
##
## Value 1 2 3 4 5
## Frequency 72122 128 211 451 493
## Proportion 0.983 0.002 0.003 0.006 0.007
## --------------------------------------------------------------------------------
## focos_inca
## n missing distinct Info Mean Gmd .05 .10
## 72912 493 41 0.789 1.392 2.055 0 0
## .25 .50 .75 .90 .95
## 0 0 2 4 6
##
## lowest : 0 1 2 3 4, highest: 50 52 60 80 98
## --------------------------------------------------------------------------------
## focos_ahor
## n missing distinct Info Mean Gmd .05 .10
## 72912 493 65 0.99 5.179 4.714 0 0
## .25 .50 .75 .90 .95
## 2 4 7 10 13
##
## lowest : 0 1 2 3 4, highest: 80 83 89 90 99
## --------------------------------------------------------------------------------
## combustible
## n missing distinct
## 73405 0 7
##
## lowest : & 1 2 3 4, highest: 2 3 4 5 6
##
## Value & 1 2 3 4 5 6
## Frequency 1 12935 277 54948 3783 958 503
## Proportion 0.000 0.176 0.004 0.749 0.052 0.013 0.007
## --------------------------------------------------------------------------------
## estufa_chi
## n missing distinct
## 13212 60193 2
##
## Value 1 2
## Frequency 3695 9517
## Proportion 0.28 0.72
## --------------------------------------------------------------------------------
## eli_basura
## n missing distinct
## 73405 0 8
##
## lowest : 1 2 3 4 5, highest: 4 5 6 7 8
##
## Value 1 2 3 4 5 6 7 8
## Frequency 55926 1752 3835 10876 294 448 252 22
## Proportion 0.762 0.024 0.052 0.148 0.004 0.006 0.003 0.000
## --------------------------------------------------------------------------------
## tenencia
## n missing distinct
## 73405 0 6
##
## lowest : 1 2 3 4 5, highest: 2 3 4 5 6
##
## Value 1 2 3 4 5 6
## Frequency 9097 10071 6360 46058 1277 542
## Proportion 0.124 0.137 0.087 0.627 0.017 0.007
## --------------------------------------------------------------------------------
## renta
## n missing distinct Info Mean Gmd .05 .10
## 9097 64308 190 0.995 2031 1608 500 700
## .25 .50 .75 .90 .95
## 1000 1500 2300 3800 5000
##
## lowest : 83 120 150 167 200, highest: 28000 35000 36000 40000 44000
## --------------------------------------------------------------------------------
## estim_pago
## n missing distinct Info Mean Gmd .05 .10
## 64308 9097 154 0.989 1892 1627 500 500
## .25 .50 .75 .90 .95
## 1000 1500 2000 3500 5000
##
## lowest : 1 50 80 100 120, highest: 40000 50000 55000 57000 60000
## --------------------------------------------------------------------------------
## pago_viv
## n missing distinct Info Mean Gmd .05 .10
## 6360 67045 498 0.999 2690 2072 800 1000
## .25 .50 .75 .90 .95
## 1300 2000 3100 5000 7000
##
## lowest : 83 100 125 150 200, highest: 28000 30000 40000 47000 70000
## --------------------------------------------------------------------------------
## pago_mesp
## n missing distinct
## 15455 57950 2
##
## Value 1 2
## Frequency 14533 922
## Proportion 0.94 0.06
## --------------------------------------------------------------------------------
## tipo_adqui
## n missing distinct
## 52418 20987 4
##
## Value 1 2 3 4
## Frequency 13543 19027 16331 3517
## Proportion 0.258 0.363 0.312 0.067
## --------------------------------------------------------------------------------
## viv_usada
## n missing distinct
## 13543 59862 2
##
## Value 1 2
## Frequency 6248 7295
## Proportion 0.461 0.539
## --------------------------------------------------------------------------------
## tipo_finan
## n missing distinct
## 48901 24504 6
##
## lowest : & 1 2 3 4, highest: 1 2 3 4 5
##
## Value & 1 2 3 4 5
## Frequency 463 8462 2387 1399 1602 34588
## Proportion 0.009 0.173 0.049 0.029 0.033 0.707
## --------------------------------------------------------------------------------
## num_dueno1
## n missing distinct
## 52418 20987 11
##
## lowest : 01 02 03 04 05, highest: 07 08 09 10 11
##
## Value 1 2 3 4 5 6 7 8 9 10 11
## Frequency 44619 7096 474 105 56 38 15 7 4 3 1
## Proportion 0.851 0.135 0.009 0.002 0.001 0.001 0.000 0.000 0.000 0.000 0.000
## --------------------------------------------------------------------------------
## hog_dueno1
## n missing distinct
## 52418 20987 3
##
## Value 1 2 3
## Frequency 52351 63 4
## Proportion 0.999 0.001 0.000
## --------------------------------------------------------------------------------
## num_dueno2
## n missing distinct
## 2973 70432 6
##
## lowest : 01 02 03 04 05, highest: 02 03 04 05 06
##
## Value 1 2 3 4 5 6
## Frequency 397 2499 46 19 8 4
## Proportion 0.134 0.841 0.015 0.006 0.003 0.001
## --------------------------------------------------------------------------------
## hog_dueno2
## n missing distinct
## 2973 70432 2
##
## Value 1 2
## Frequency 2961 12
## Proportion 0.996 0.004
## --------------------------------------------------------------------------------
## escrituras
## n missing distinct
## 52418 20987 4
##
## Value 1 2 3 4
## Frequency 33065 4096 14789 468
## Proportion 0.631 0.078 0.282 0.009
## --------------------------------------------------------------------------------
## lavadero
## n missing distinct
## 73405 0 2
##
## Value 1 2
## Frequency 60220 13185
## Proportion 0.82 0.18
## --------------------------------------------------------------------------------
## fregadero
## n missing distinct
## 73405 0 2
##
## Value 1 2
## Frequency 42639 30766
## Proportion 0.581 0.419
## --------------------------------------------------------------------------------
## regadera
## n missing distinct
## 73405 0 2
##
## Value 1 2
## Frequency 52843 20562
## Proportion 0.72 0.28
## --------------------------------------------------------------------------------
## tinaco_azo
## n missing distinct
## 73405 0 2
##
## Value 1 2
## Frequency 39770 33635
## Proportion 0.542 0.458
## --------------------------------------------------------------------------------
## cisterna
## n missing distinct
## 73405 0 2
##
## Value 1 2
## Frequency 12705 60700
## Proportion 0.173 0.827
## --------------------------------------------------------------------------------
## pileta
## n missing distinct
## 73405 0 2
##
## Value 1 2
## Frequency 28216 45189
## Proportion 0.384 0.616
## --------------------------------------------------------------------------------
## calent_sol
## n missing distinct
## 73405 0 2
##
## Value 1 2
## Frequency 5841 67564
## Proportion 0.08 0.92
## --------------------------------------------------------------------------------
## calent_gas
## n missing distinct
## 73405 0 2
##
## Value 1 2
## Frequency 25252 48153
## Proportion 0.344 0.656
## --------------------------------------------------------------------------------
## medidor_luz
## n missing distinct
## 73405 0 2
##
## Value 1 2
## Frequency 67746 5659
## Proportion 0.923 0.077
## --------------------------------------------------------------------------------
## bomba_agua
## n missing distinct
## 73405 0 2
##
## Value 1 2
## Frequency 16250 57155
## Proportion 0.221 0.779
## --------------------------------------------------------------------------------
## tanque_gas
## n missing distinct
## 73405 0 2
##
## Value 1 2
## Frequency 6584 66821
## Proportion 0.09 0.91
## --------------------------------------------------------------------------------
## aire_acond
## n missing distinct
## 73405 0 2
##
## Value 1 2
## Frequency 13712 59693
## Proportion 0.187 0.813
## --------------------------------------------------------------------------------
## calefacc
## n missing distinct
## 73405 0 2
##
## Value 1 2
## Frequency 1958 71447
## Proportion 0.027 0.973
## --------------------------------------------------------------------------------
## tot_resid
## n missing distinct Info Mean Gmd .05 .10
## 73405 0 20 0.971 3.667 2.049 1 1
## .25 .50 .75 .90 .95
## 2 4 5 6 7
##
## lowest : 1 2 3 4 5, highest: 16 17 18 20 22
##
## Value 1 2 3 4 5 6 7 8 9 10 11
## Frequency 8345 13669 14114 16119 10807 5270 2529 1227 615 314 178
## Proportion 0.114 0.186 0.192 0.220 0.147 0.072 0.034 0.017 0.008 0.004 0.002
##
## Value 12 13 14 15 16 17 18 20 22
## Frequency 86 61 37 11 13 4 4 1 1
## Proportion 0.001 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000
## --------------------------------------------------------------------------------
## tot_hom
## n missing distinct Info Mean Gmd .05 .10
## 73405 0 12 0.916 1.794 1.25 0 1
## .25 .50 .75 .90 .95
## 1 2 2 3 4
##
## lowest : 0 1 2 3 4, highest: 7 8 9 10 11
##
## Value 0 1 2 3 4 5 6 7 8 9 10
## Frequency 6785 27680 21535 11447 4104 1252 412 119 50 9 8
## Proportion 0.092 0.377 0.293 0.156 0.056 0.017 0.006 0.002 0.001 0.000 0.000
##
## Value 11
## Frequency 4
## Proportion 0.000
## --------------------------------------------------------------------------------
## tot_muj
## n missing distinct Info Mean Gmd .05 .10
## 73405 0 13 0.92 1.874 1.288 0 1
## .25 .50 .75 .90 .95
## 1 2 3 3 4
##
## lowest : 0 1 2 3 4, highest: 8 9 10 11 12
##
## Value 0 1 2 3 4 5 6 7 8 9 10
## Frequency 5923 26715 21842 12096 4545 1476 535 184 50 19 10
## Proportion 0.081 0.364 0.298 0.165 0.062 0.020 0.007 0.003 0.001 0.000 0.000
##
## Value 11 12
## Frequency 7 3
## Proportion 0.000 0.000
## --------------------------------------------------------------------------------
## tot_hog
## n missing distinct Info Mean Gmd
## 73405 0 5 0.043 1.017 0.03341
##
## lowest : 1 2 3 4 5, highest: 1 2 3 4 5
##
## Value 1 2 3 4 5
## Frequency 72336 926 118 20 5
## Proportion 0.985 0.013 0.002 0.000 0.000
## --------------------------------------------------------------------------------
## ubica_geo
## n missing distinct
## 73405 0 996
##
## lowest : 01001 01002 01003 01005 01006, highest: 32051 32052 32053 32054 32056
## --------------------------------------------------------------------------------
## tam_loc
## n missing distinct
## 73405 0 4
##
## Value 1 2 3 4
## Frequency 26303 9270 9666 28166
## Proportion 0.358 0.126 0.132 0.384
## --------------------------------------------------------------------------------
## est_socio
## n missing distinct
## 73405 0 4
##
## Value 1 2 3 4
## Frequency 17667 38573 12428 4737
## Proportion 0.241 0.525 0.169 0.065
## --------------------------------------------------------------------------------
## est_dis
## n missing distinct
## 73405 0 543
##
## lowest : 001 002 003 004 005, highest: 539 540 541 542 543
## --------------------------------------------------------------------------------
## upm
## n missing distinct
## 73405 0 8377
##
## lowest : 0000001 0000002 0000003 0000004 0000005
## highest: 0008391 0008392 0008393 0008394 0008395
## --------------------------------------------------------------------------------
## factor
## n missing distinct Info Mean Gmd .05 .10
## 73405 0 1747 1 465.3 436.2 58 97
## .25 .50 .75 .90 .95
## 170 323 594 940 1350
##
## lowest : 9 18 19 21 22, highest: 5465 5538 6045 6371 6727
## --------------------------------------------------------------------------------
## procaptar
## n missing distinct
## 73405 0 2
##
## Value No aplica
## Frequency 72694
## Proportion 0.99
##
## Value Vivienda con precipitación pluvial mayor o igual a 1500 mm
## Frequency 711
## Proportion 0.01
## --------------------------------------------------------------------------------
## cve_estado
## n missing distinct
## 73405 0 32
##
## lowest : 01 02 03 04 05, highest: 28 29 30 31 32
## --------------------------------------------------------------------------------
## estado
## n missing distinct
## 73405 0 32
##
## lowest : Aguascalientes Baja California Baja California Sur Campeche Chiapas
## highest: Tamaulipas Tlaxcala Veracruz de Ignacio de la Llave Yucatán Zacatecas
## --------------------------------------------------------------------------------
Calculamos el numero de viviendas por estados y el numero de viviendas rurales porcentualmente en cada estado.
numero_viviendas <-
vivienda %>%
mutate(esvivienda = 1,
esrural = if_else(tam_loc == 4, 1, 0), # Contamos el numero de viv. en localidades con menos de 2.5 k
totalviviendas = esvivienda*factor,
totalviviendas_rural = esrural*factor) %>%
group_by(estado) %>%
summarise(totalviviendas = sum(totalviviendas),
totalviviendas_rural = sum(totalviviendas_rural)/sum(totalviviendas), 4)
numero_viviendas
## # A tibble: 32 x 4
## estado totalviviendas totalviviendas_rural `4`
## <chr> <dbl> <dbl> <dbl>
## 1 Aguascalientes 339512 0.216 4
## 2 Baja California 1074429 0.0944 4
## 3 Baja California Sur 255062 0.151 4
## 4 Campeche 252458 0.268 4
## 5 Chiapas 1307648 0.487 4
## 6 Chihuahua 1147242 0.150 4
## 7 Ciudad de México 2601456 0.00564 4
## 8 Coahuila de Zaragoza 840362 0.106 4
## 9 Colima 228268 0.123 4
## 10 Durango 487076 0.298 4
## # ... with 22 more rows
Promedio y mediana de numero de cuartos por vivienda por tamanio de localidad
media_mediana<-vivienda %>%
group_by(tam_loc) %>%
summarise(promedio_cuartos = mean(num_cuarto, na.rm = TRUE),
mediana_cuartos = median(num_cuarto, na.rm = TRUE),.groups='drop')
Tamaño localidad es una variable:
## [1] "character"
## NULL
El resutlado será:
## # A tibble: 4 x 3
## tam_loc promedio_cuartos mediana_cuartos
## <chr> <dbl> <dbl>
## 1 1 4.00 4
## 2 2 3.68 4
## 3 3 3.56 3
## 4 4 3.40 3
Si queremos modificar el tipo de variable de tam_loc:
Ahora volviendo a correr el codigo anterior:
## [1] TRUE
## [1] "1" "2" "3" "4"
Ingreso trimestral del hogar por tamaño de localidad
Tenemos más que un lugar por vivienda
## # A tibble: 74,647 x 2
## folioviv foliohog
## <chr> <chr>
## 1 0100013601 1
## 2 0100013602 1
## 3 0100013603 1
## 4 0100013604 1
## 5 0100013606 1
## 6 0100026701 1
## 7 0100026703 1
## 8 0100026704 1
## 9 0100026706 1
## 10 0100027201 1
## # ... with 74,637 more rows
por lo tanto tendremos que crear una clave unica:
Analizamos el resultado obtenido:
## # A tibble: 74,647 x 3
## folioviv foliohog folioviv_hog
## <chr> <chr> <chr>
## 1 0100013601 1 01000136011
## 2 0100013602 1 01000136021
## 3 0100013603 1 01000136031
## 4 0100013604 1 01000136041
## 5 0100013606 1 01000136061
## 6 0100026701 1 01000267011
## 7 0100026703 1 01000267031
## 8 0100026704 1 01000267041
## 9 0100026706 1 01000267061
## 10 0100027201 1 01000272011
## # ... with 74,637 more rows
Calculamos el ingreso por hogar:
calculo_ingreso <-
ingreso %>%
mutate(folioviv_hog = str_c(folioviv, as.character(foliohog))) %>% #Mismo identificador que creamos antes
group_by(folioviv_hog) %>% #Cálculo por hogar
summarise(ingreso_hogar = sum(ing_tri),.groups='drop') #Sumamos las fuentes de ingreso
Hacemos un join para asociar el resultado obtenido a toda la listqa de hogares que habiamos identificado:
Ahora podemos calcular el ingreso por localidad:
ingreso_por_localidad <-
hogar %>%
group_by(tam_loc) %>%
summarise(media = mean(ingreso_hogar, na.rm = TRUE),
pc50 = median(ingreso_hogar, na.rm = TRUE),
min = min(ingreso_hogar, na.rm = TRUE),
max = max(ingreso_hogar, na.rm = TRUE))
ingreso_por_localidad
## # A tibble: 4 x 5
## tam_loc media pc50 min max
## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 1 52856. 37746. 68.5 3916956.
## 2 2 42304. 30962. 293. 2738151.
## 3 3 35928. 26053. 293. 1626365.
## 4 4 30099. 20543. 49.2 17757845.
¿Cuántos hogares reciben más de 15% de su ingreso como beneficio del gobierno?
Vamos, antes que todo, a definir una dummie para identificar
hogar <-
hogar %>%
mutate(folioviv_hog = str_c(folioviv, as.character(foliohog)), ##indicador para hogar
prop_gobierno = bene_gob/ing_cor, ##la variable de fraccion
dmas15 = if_else(prop_gobierno > .15, 1, 0))
Calculamos el numero de hogares para cada localidad:
hogares_loc <-
hogar %>%
group_by(folioviv_hog) %>%
mutate(obs = 1,
num = obs*factor) %>%
ungroup() %>%
group_by(tam_loc) %>%
summarise(sumahogares = sum(num),.groups='drop')
hogares_loc
## # A tibble: 4 x 2
## tam_loc sumahogares
## <chr> <dbl>
## 1 1 16735454
## 2 2 5107996
## 3 3 4876725
## 4 4 8024643
Las que si reciben más de 15% en aydua gubernamental:
hogares_d <-
hogar %>%
filter(is.na(dmas15) != TRUE) %>%
group_by(folioviv_hog) %>%
mutate(obs = 1,
num = obs*factor) %>%
ungroup() %>%
group_by(tam_loc, dmas15) %>%
summarise(num = sum(num))
## `summarise()` has grouped output by 'tam_loc'. You can override using the `.groups` argument.
## # A tibble: 8 x 3
## # Groups: tam_loc [4]
## tam_loc dmas15 num
## <chr> <dbl> <dbl>
## 1 1 0 16434595
## 2 1 1 297487
## 3 2 0 4882380
## 4 2 1 224555
## 5 3 0 4394684
## 6 3 1 481800
## 7 4 0 6160257
## 8 4 1 1864247
Construimos nuestra tabla de resumen:
hogares_loc_d <- left_join(hogares_loc, hogares_d, by = "tam_loc")
hogares_loc_d <-
hogares_loc_d %>%
mutate(proporcion = num/sumahogares)
hogares_loc_d
## # A tibble: 8 x 5
## tam_loc sumahogares dmas15 num proporcion
## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 1 16735454 0 16434595 0.982
## 2 1 16735454 1 297487 0.0178
## 3 2 5107996 0 4882380 0.956
## 4 2 5107996 1 224555 0.0440
## 5 3 4876725 0 4394684 0.901
## 6 3 4876725 1 481800 0.0988
## 7 4 8024643 0 6160257 0.768
## 8 4 8024643 1 1864247 0.232
Porcentaje promedio de gasto de hogares en materiales y servicios de reparacion por tamanio de localidad
hogar <-
hogar %>%
mutate(prop_mater_serv = mater_serv/gasto_mon)
hogares_serv_loc <-
hogar %>%
group_by(tam_loc) %>%
summarise(prom_prop_mater_serv = mean(prop_mater_serv, na.rm = TRUE))
hogares_serv_loc
## # A tibble: 4 x 2
## tam_loc prom_prop_mater_serv
## <chr> <dbl>
## 1 1 0.00740
## 2 2 0.00840
## 3 3 0.0107
## 4 4 0.0119
##
## Call:
## lm(formula = prop_gobierno ~ edad_jefe + educa_jefe, data = hogar)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.14571 -0.03797 -0.01724 0.00309 0.86447
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 8.084e-02 1.950e-03 41.463 <2e-16 ***
## edad_jefe 6.360e-04 2.332e-05 27.270 <2e-16 ***
## educa_jefe02 -1.522e-02 1.017e-02 -1.497 0.134
## educa_jefe03 -3.714e-02 1.436e-03 -25.860 <2e-16 ***
## educa_jefe04 -6.621e-02 1.463e-03 -45.270 <2e-16 ***
## educa_jefe05 -8.178e-02 2.186e-03 -37.402 <2e-16 ***
## educa_jefe06 -8.230e-02 1.445e-03 -56.955 <2e-16 ***
## educa_jefe07 -9.349e-02 2.229e-03 -41.939 <2e-16 ***
## educa_jefe08 -9.673e-02 1.637e-03 -59.088 <2e-16 ***
## educa_jefe09 -1.026e-01 2.365e-03 -43.379 <2e-16 ***
## educa_jefe10 -1.062e-01 1.676e-03 -63.347 <2e-16 ***
## educa_jefe11 -1.102e-01 2.797e-03 -39.409 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.08856 on 74627 degrees of freedom
## (8 observations deleted due to missingness)
## Multiple R-squared: 0.1377, Adjusted R-squared: 0.1376
## F-statistic: 1084 on 11 and 74627 DF, p-value: < 2.2e-16
Importamos los datos y renombramos en español:
datos<-as_tibble(wooldridge::wage1) %>%
rename(SalarioHora=wage,
Educación=educ,
Experiencia=exper,
Antiguedad=tenure,
Género=female,
EdoCivil=married) %>%
mutate(Género = recode_factor(Género, `1` = "Mujer", `0` = "Hombre"),
EdoCivil = recode_factor(EdoCivil, `1` = "Casad@", `0` = "Solter@"))
Analizamos la base:
Empezamos con un modelo ingenuo, para determinare el salario por hora:
Para obtener una tabla de resumen de esta regresión podemos hacer:
##
## Call:
## lm(formula = SalarioHora ~ Género, data = datos)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.5995 -1.8495 -0.9877 1.4260 17.8805
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.5877 0.2190 20.950 < 2e-16 ***
## GéneroHombre 2.5118 0.3034 8.279 1.04e-15 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.476 on 524 degrees of freedom
## Multiple R-squared: 0.1157, Adjusted R-squared: 0.114
## F-statistic: 68.54 on 1 and 524 DF, p-value: 1.042e-15
O:
##
## Please cite as:
## Hlavac, Marek (2018). stargazer: Well-Formatted Regression and Summary Statistics Tables.
## R package version 5.2.2. https://CRAN.R-project.org/package=stargazer
##
## ===============================================
## Dependent variable:
## ---------------------------
## SalarioHora
## -----------------------------------------------
## GéneroHombre 2.512***
## (0.303)
##
## Constant 4.588***
## (0.219)
##
## -----------------------------------------------
## Observations 526
## R2 0.116
## Adjusted R2 0.114
## Residual Std. Error 3.476 (df = 524)
## F Statistic 68.537*** (df = 1; 524)
## ===============================================
## Note: *p<0.1; **p<0.05; ***p<0.01
Ahora añadimos un control:
##
## Call:
## lm(formula = SalarioHora ~ Género + Educación, data = datos)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.9890 -1.8702 -0.6651 1.0447 15.4998
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.65055 0.65232 -2.530 0.0117 *
## GéneroHombre 2.27336 0.27904 8.147 2.76e-15 ***
## Educación 0.50645 0.05039 10.051 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.186 on 523 degrees of freedom
## Multiple R-squared: 0.2588, Adjusted R-squared: 0.256
## F-statistic: 91.32 on 2 and 523 DF, p-value: < 2.2e-16
Podemos cambiar la categoria de referencia:
datos <- datos %>%
mutate(Género = relevel(Género, ref = "Hombre"),EdoCivil=relevel(EdoCivil,ref="Solter@"))
Ahora nuestor modelo será:
##
## Call:
## lm(formula = SalarioHora ~ Género + Educación, data = datos)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.9890 -1.8702 -0.6651 1.0447 15.4998
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.62282 0.67253 0.926 0.355
## GéneroMujer -2.27336 0.27904 -8.147 2.76e-15 ***
## Educación 0.50645 0.05039 10.051 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.186 on 523 degrees of freedom
## Multiple R-squared: 0.2588, Adjusted R-squared: 0.256
## F-statistic: 91.32 on 2 and 523 DF, p-value: < 2.2e-16
Podemos calcular los interceptos especificos para cada genero.
interceptos <- c(coef(modelo1.1)["(Intercept)"], #intercepto de hombres
coef(modelo1.1)["(Intercept)"] + coef(modelo1.1)["GéneroMujer"]) #intercepto de mujeres
rectas.df<- data.frame(interceptos = interceptos,
slopes = rep(coef(modelo1.1)["Educación"], 2),
Género = levels(datos$Género))
Y plotearlo:
qplot(x = Educación, y = SalarioHora, color = Género, data = datos) +
geom_abline(aes(intercept = interceptos,
slope = slopes,
color = Género), data = rectas.df)
Siendo female= 1 si la persona es mujer y female= 0 si la persona es hombre el parámetro de “female” tiene la interpretación siguiente: es la diferencia del salario por hora entre hombres y mujeres, dada una misma cantidad de educación (y un mismo término del error,u). Determina si hay discriminación en contra de las mujeres: si, para un mismo nivel de los demás factores, parámetro de female <0, las mujeres ganan, en promedio, menos que los hombres.
Podemos interpretar el parametro female = E(wage| female,educ) - E(wage|male,educ)
## GéneroMujer
## -2.273362
## (Intercept)
## 0.6228168
## (Intercept)
## -1.650545
Podemos efectuar una regresión sin intercepto:
## Warning: package 'kableExtra' was built under R version 4.0.5
##
## Attaching package: 'kableExtra'
## The following object is masked from 'package:dplyr':
##
## group_rows
##
## Attaching package: 'xtable'
## The following objects are masked from 'package:Hmisc':
##
## label, label<-
modelo1.2<-lm(SalarioHora~Género+Educación-1,data = datos)
salida.modelo1.2<- data.frame(xtable(summary(modelo1.2))) #Resumen del modelo 1.7
kable(salida.modelo1.2, caption="Ecuación de Salario con Género y Educación, sin intercepto")
Estimate | Std..Error | t.value | Pr…t.. | |
---|---|---|---|---|
GéneroHombre | 0.6228168 | 0.6725334 | 0.9260756 | 0.3548338 |
GéneroMujer | -1.6505451 | 0.6523170 | -2.5302806 | 0.0116894 |
Educación | 0.5064521 | 0.0503906 | 10.0505201 | 0.0000000 |
En este caso como se interpretan los coeficientes?
Los interceptos serán dados por el parametro asociado al genero.
Podemos añadir más covariables (X).
modelo1.3<-lm(SalarioHora~Género+Educación+Experiencia+Antiguedad,data = datos)
salida.modelo1.3<- data.frame(xtable(summary(modelo1.3))) #Resumen del modelo 1.7
kable(salida.modelo1.3, caption="Modelo de regresión múltiple para el Salario por hora")
Estimate | Std..Error | t.value | Pr…t.. | |
---|---|---|---|---|
(Intercept) | -1.5679387 | 0.7245511 | -2.164014 | 0.0309170 |
GéneroMujer | -1.8108522 | 0.2648252 | -6.837915 | 0.0000000 |
Educación | 0.5715048 | 0.0493373 | 11.583621 | 0.0000000 |
Experiencia | 0.0253959 | 0.0115694 | 2.195083 | 0.0285981 |
Antiguedad | 0.1410051 | 0.0211617 | 6.663225 | 0.0000000 |
Podemos utilziar más de una variable dicotomica en una regresión:
modelo1.4<-lm(log(SalarioHora)~Género+Educación+EdoCivil+
Experiencia+I(Experiencia^2)+Antiguedad+I(Antiguedad^2),data = datos)
El resultado arrojado será:
salida.modelo1.4<- data.frame(xtable(summary(modelo1.4))) #Resumen del modelo 1.7
kable(salida.modelo1.4, caption="Modelo con dos variables dicotómicas")
Estimate | Std..Error | t.value | Pr…t.. | |
---|---|---|---|---|
(Intercept) | 0.4177837 | 0.0988662 | 4.225749 | 0.0000281 |
GéneroMujer | -0.2901837 | 0.0361121 | -8.035646 | 0.0000000 |
Educación | 0.0791547 | 0.0068003 | 11.639885 | 0.0000000 |
EdoCivilCasad@ | 0.0529219 | 0.0407561 | 1.298503 | 0.1946922 |
Experiencia | 0.0269535 | 0.0053258 | 5.060949 | 0.0000006 |
I(Experiencia^2) | -0.0005399 | 0.0001122 | -4.813500 | 0.0000019 |
Antiguedad | 0.0312962 | 0.0068482 | 4.569988 | 0.0000061 |
I(Antiguedad^2) | -0.0005744 | 0.0002347 | -2.447533 | 0.0147147 |
Una limitación importante de este modelo es que se supone que la prima de casado es la misma para hombres que para mujeres; esto se soluciona en el siguitnte modelo
Creamos una variable categorica que defina la combinación de casado y genero:
datos<-datos %>% mutate(GenEdoCivil=as.factor(case_when(
Género=="Mujer" & EdoCivil=="Casad@" ~ "MujerCasada",
Género=="Mujer" & EdoCivil=="Solter@" ~ "MujerSoltera",
Género=="Hombre" & EdoCivil=="Casad@" ~ "HombreCasado",
Género=="Hombre" & EdoCivil=="Solter@" ~ str_c("Hombre","Soltero"))))
Cambiamos la base de referencia a hombres solteros:
## [1] "HombreCasado" "HombreSoltero" "MujerCasada" "MujerSoltera"
datos <- datos %>% mutate(GenEdoCivil = relevel(GenEdoCivil, ref = "HombreSoltero"))
levels(datos$GenEdoCivil)
## [1] "HombreSoltero" "HombreCasado" "MujerCasada" "MujerSoltera"
Corremos de nuevo el modelo:
library(stargazer)
modelo1.5<-lm(log(SalarioHora)~GenEdoCivil+Educación+
Experiencia+I(Experiencia^2)+Antiguedad+I(Antiguedad^2),data = datos)
stargazer(modelo1.5,type = "text")
##
## ===================================================
## Dependent variable:
## ---------------------------
## log(SalarioHora)
## ---------------------------------------------------
## GenEdoCivilHombreCasado 0.213***
## (0.055)
##
## GenEdoCivilMujerCasada -0.198***
## (0.058)
##
## GenEdoCivilMujerSoltera -0.110**
## (0.056)
##
## Educación 0.079***
## (0.007)
##
## Experiencia 0.027***
## (0.005)
##
## I(Experiencia2) -0.001***
## (0.0001)
##
## Antiguedad 0.029***
## (0.007)
##
## I(Antiguedad2) -0.001**
## (0.0002)
##
## Constant 0.321***
## (0.100)
##
## ---------------------------------------------------
## Observations 526
## R2 0.461
## Adjusted R2 0.453
## Residual Std. Error 0.393 (df = 517)
## F Statistic 55.246*** (df = 8; 517)
## ===================================================
## Note: *p<0.1; **p<0.05; ***p<0.01
Para interpretar los coeficientes de las variables binarias, hay que recordar que el grupo base es hombres solteros. De esta manera, las estimaciones para las tres variables binarias miden la diferencia proporcional en el salario con relación a los hombres solteros.
a diferencia proporcional estimada entre las mujeres solteras y casadas es 0.110 - (-0.198) = 0.088, ¿Pero es estadísticamente significativa?
Volvemos a correr el modelo utilziando uno de estos grupo como base:
datos <- datos %>% mutate(GenEdoCivil = relevel(GenEdoCivil, ref = "MujerCasada"))
modelo1.6<-lm(log(SalarioHora)~GenEdoCivil+Educación+
Experiencia+I(Experiencia^2)+Antiguedad+I(Antiguedad^2),data = datos)
stargazer(modelo1.6,type = "text")
##
## ====================================================
## Dependent variable:
## ---------------------------
## log(SalarioHora)
## ----------------------------------------------------
## GenEdoCivilHombreSoltero 0.198***
## (0.058)
##
## GenEdoCivilHombreCasado 0.411***
## (0.046)
##
## GenEdoCivilMujerSoltera 0.088*
## (0.052)
##
## Educación 0.079***
## (0.007)
##
## Experiencia 0.027***
## (0.005)
##
## I(Experiencia2) -0.001***
## (0.0001)
##
## Antiguedad 0.029***
## (0.007)
##
## I(Antiguedad2) -0.001**
## (0.0002)
##
## Constant 0.123
## (0.106)
##
## ----------------------------------------------------
## Observations 526
## R2 0.461
## Adjusted R2 0.453
## Residual Std. Error 0.393 (df = 517)
## F Statistic 55.246*** (df = 8; 517)
## ====================================================
## Note: *p<0.1; **p<0.05; ***p<0.01
En lugar de construir categorias ad hoc podemos ocupar las intereacción entre variables:
Grupo base: La combinación female 0 y married 0 corresponde al grupo de los hombres solteros.
Hay diferentes formas para meter las interaciones.
Primera forma:
modelo1.7<-lm(log(SalarioHora)~Género+EdoCivil+Género:EdoCivil+Educación+
Experiencia+I(Experiencia^2)+Antiguedad+I(Antiguedad^2),data = datos)
Segunda forma:
modelo1.7<-lm(log(SalarioHora)~Género*EdoCivil+Educación+
Experiencia+I(Experiencia^2)+Antiguedad+I(Antiguedad^2),data = datos)
Tercera forma (actualización)
El resultado es el siguiente:
salida.modelo1.7<- data.frame(xtable(summary(modelo1.7))) #Resumen del modelo 1.7
kable(salida.modelo1.7, caption="Ecuación de Salario con interacción entre regresoras categóricas")
Estimate | Std..Error | t.value | Pr…t.. | |
---|---|---|---|---|
(Intercept) | 0.3213781 | 0.1000090 | 3.213492 | 0.0013931 |
GéneroMujer | -0.1103502 | 0.0557421 | -1.979658 | 0.0482719 |
Educación | 0.0789103 | 0.0066945 | 11.787333 | 0.0000000 |
EdoCivilCasad@ | 0.2126757 | 0.0553572 | 3.841881 | 0.0001373 |
Experiencia | 0.0268006 | 0.0052428 | 5.111835 | 0.0000004 |
I(Experiencia^2) | -0.0005352 | 0.0001104 | -4.847105 | 0.0000017 |
Antiguedad | 0.0290875 | 0.0067620 | 4.301614 | 0.0000203 |
I(Antiguedad^2) | -0.0005331 | 0.0002312 | -2.305553 | 0.0215306 |
GéneroMujer:EdoCivilCasad@ | -0.3005931 | 0.0717669 | -4.188461 | 0.0000330 |
Podemos considerar pendientes distintas:
modelo1.8<-lm(log(SalarioHora)~Género+Género:Educación+Educación+
Experiencia+I(Experiencia^2)+Antiguedad+I(Antiguedad^2),data = datos)
modelo1.8<- lm(log(SalarioHora)~Género*Educación,data=datos)
stargazer(modelo1.8,type = "text")
##
## =================================================
## Dependent variable:
## ---------------------------
## log(SalarioHora)
## -------------------------------------------------
## GéneroMujer -0.360*
## (0.185)
##
## Educación 0.077***
## (0.009)
##
## GéneroMujer:Educación -0.0001
## (0.015)
##
## Constant 0.826***
## (0.118)
##
## -------------------------------------------------
## Observations 526
## R2 0.300
## Adjusted R2 0.296
## Residual Std. Error 0.446 (df = 522)
## F Statistic 74.649*** (df = 3; 522)
## =================================================
## Note: *p<0.1; **p<0.05; ***p<0.01
Y calcular los interceptos especificos por genero:
interceptos <- c(coef(modelo1.8)["(Intercept)"], #intercepto de hombres
coef(modelo1.8)["(Intercept)"] + coef(modelo1.8)["GéneroMujer"])
Calculamos las pendientes específicos de la Educación según el género:
pendientes<- c(coef(modelo1.8)["Educación"], #Pendiente de hombres
coef(modelo1.8)["Educación"] + coef(modelo1.8)["GéneroMujer:Educación"]) #Pendiente de mujeres
rectas.df<- data.frame(interceptos = interceptos,
pendientes = pendientes,
Género = levels(datos$Género))
qplot(x = Educación, y = log(SalarioHora), color = Género, data = datos) +
geom_abline(aes(intercept = interceptos,
slope = pendientes,
color = Género), data = rectas.df)
O alternativamente podemos:
qplot(x = Educación, y = log(SalarioHora) , color = Género, data = datos) +
stat_smooth(method = "lm", se = FALSE, fullrange = F)
## `geom_smooth()` using formula 'y ~ x'
#Otra forma alternativa es
ggplot(datos, aes(x =Educación, y = log(SalarioHora), colour = Género)) + geom_point() +
stat_smooth(method = "lm", formula = y ~ x, se = FALSE)
Ejemplo: efecto de la raza sobre los sueldos de los jugadores de beisbol:
modelo<-lm(SalarioHora~Género+Educación+ Experiencia+Educación:Experiencia,data = datos)
modelo<-lm(log(SalarioHora)~Género+Educación+Educación:Experiencia+
Experiencia+I(Experiencia^2)+Antiguedad+I(Antiguedad^2),data = datos)
modelo<-lm(log(SalarioHora)~Educación+Educación:Experiencia+
Experiencia+I(Experiencia^2),data = datos)
modelo<-lm(log(SalarioHora)~Educación+Educación:Experiencia+
Experiencia,data = datos)
salida.modelo<- data.frame(xtable(summary(modelo)))
kable(salida.modelo, caption="Ecuación de Salario con interacción y términos cuadráticos")
Estimate | Std..Error | t.value | Pr…t.. | |
---|---|---|---|---|
(Intercept) | 0.1532232 | 0.1673326 | 0.9156805 | 0.3602573 |
Educación | 0.1030365 | 0.0127368 | 8.0896528 | 0.0000000 |
Experiencia | 0.0132641 | 0.0060374 | 2.1969857 | 0.0284602 |
Educación:Experiencia | -0.0002473 | 0.0004945 | -0.5000819 | 0.6172282 |
Ploteamos nuestros resultados:
## Warning: package 'jtools' was built under R version 4.0.5
##
## Attaching package: 'jtools'
## The following object is masked from 'package:Hmisc':
##
## %nin%
## Warning: package 'interactions' was built under R version 4.0.5
interact_plot(modelo, pred =Educación, modx =Experiencia,
plot.points = TRUE,main.title="Interacción Educ*Exp",data = datos)
Plot sin nube de puntos:
Plot con los puntos de datos: